Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | SARS-CoV-2 | Research

Development of a neutralization monoclonal antibody with a broad neutralizing effect against SARS-CoV-2 variants

Authors: Hae Li Ko, Deuk-ki Lee, Younghyeon Kim, Hui Jeong Jang, Youn Woo Lee, Ho-Young Lee, Sang-Hyuk Seok, Jun Won Park, Jin-Kyung Limb, Da In On, Jun-Won Yun, Kwang-Soo Lyoo, Daesub Song, Minjoo Yeom, Hanbyeul Lee, Je Kyung Seong, Sungjin Lee

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has challenged the effectiveness of current therapeutic regimens. Here, we aimed to develop a potent SARS-CoV-2 antibody with broad neutralizing effect by screening a scFv library with the spike protein receptor-binding domain (RBD) via phage display.

Methods

SKAI-DS84 was identified through phage display, and we performed pseudovirus neutralization assays, authentic virus neutralization assays, and in vivo neutralization efficacy evaluations. Furthermore, surface plasmon resonance (SPR) analysis was conducted to assess the physical characteristics of the antibody, including binding kinetics and measure its affinity for variant RBDs.

Results

The selected clones were converted to human IgG, and among them, SKAI-DS84 was selected for further analyses based on its binding affinity with the variant RBDs. Using pseudoviruses, we confirmed that SKAI-DS84 was strongly neutralizing against wild-type, B.1.617.2, B.1.1.529, and subvariants of SARS-CoV-2. We also tested the neutralizing effect of SKAI-DS84 on authentic viruses, in vivo and observed a reduction in viral replication and improved lung pathology. We performed binding and epitope mapping experiments to understand the mechanisms underlying neutralization and identified quaternary epitopes formed by the interaction between RBDs as the target of SKAI-DS84.

Conclusions

We identified, produced, and tested the neutralizing effect of SKAI-DS84 antibody. Our results highlight that SKAI-DS84 could be a potential neutralizing antibody against SARS-CoV-2 and its variants.
Appendix
Available only for authorised users
Literature
2.
go back to reference Gallagher KME, Leick MB, Larson RC, Berger TR, Katsis K, Yam JY, Brini G, Grauwet K. Collection MC-, processing T, Maus MV: SARS-CoV-2 T-cell immunity to variants of concern following vaccination. bioRxiv. 2021;27:113. Gallagher KME, Leick MB, Larson RC, Berger TR, Katsis K, Yam JY, Brini G, Grauwet K. Collection MC-, processing T, Maus MV: SARS-CoV-2 T-cell immunity to variants of concern following vaccination. bioRxiv. 2021;27:113.
3.
go back to reference Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022;602:676–81.CrossRefPubMed Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022;602:676–81.CrossRefPubMed
4.
go back to reference VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purcell LA, Kawaoka Y, Corti D, Fremont DH, Diamond MS. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28:490–5.CrossRefPubMedPubMedCentral VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purcell LA, Kawaoka Y, Corti D, Fremont DH, Diamond MS. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28:490–5.CrossRefPubMedPubMedCentral
5.
go back to reference Sun J, Yang ZD, Xie X, Li L, Zeng HS, Gong B, Xu JQ, Wu JH, Qu BB, Song GW. Clinical application of SARS-CoV-2 antibody detection and monoclonal antibody therapies against COVID-19. World J Clin Cases. 2023;11:2168–80.CrossRefPubMedPubMedCentral Sun J, Yang ZD, Xie X, Li L, Zeng HS, Gong B, Xu JQ, Wu JH, Qu BB, Song GW. Clinical application of SARS-CoV-2 antibody detection and monoclonal antibody therapies against COVID-19. World J Clin Cases. 2023;11:2168–80.CrossRefPubMedPubMedCentral
6.
go back to reference Westendorf K, Zentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, Lovett E, van der Lee R, Hendle J, Pustilnik A, et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 2022;39:110812.CrossRefPubMedPubMedCentral Westendorf K, Zentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, Lovett E, van der Lee R, Hendle J, Pustilnik A, et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 2022;39:110812.CrossRefPubMedPubMedCentral
7.
go back to reference Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med. 2021;13:eabf1096.CrossRef Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med. 2021;13:eabf1096.CrossRef
8.
go back to reference Jin G, Lee S, Choi M, Son S, Kim GW, Oh JW, Lee C, Lee K. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. Eur J Med Chem. 2014;75:413–25.CrossRefPubMed Jin G, Lee S, Choi M, Son S, Kim GW, Oh JW, Lee C, Lee K. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. Eur J Med Chem. 2014;75:413–25.CrossRefPubMed
9.
go back to reference Yang HY, Kang KJ, Chung JE, Shim H. Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol Cells. 2009;27:225–35.CrossRefPubMed Yang HY, Kang KJ, Chung JE, Shim H. Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol Cells. 2009;27:225–35.CrossRefPubMed
10.
go back to reference Lee S, Ahn HJ. Anti-EpCAM-conjugated adeno-associated virus serotype 2 for systemic delivery of EGFR shRNA: its retargeting and antitumor effects on OVCAR3 ovarian cancer in vivo. Acta Biomater. 2019;91:258–69.CrossRefPubMed Lee S, Ahn HJ. Anti-EpCAM-conjugated adeno-associated virus serotype 2 for systemic delivery of EGFR shRNA: its retargeting and antitumor effects on OVCAR3 ovarian cancer in vivo. Acta Biomater. 2019;91:258–69.CrossRefPubMed
11.
go back to reference Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC, Mendoza P, Rutkowska M, Bednarski E, Gaebler C, et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020;217:e20201181.CrossRefPubMedPubMedCentral Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC, Mendoza P, Rutkowska M, Bednarski E, Gaebler C, et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020;217:e20201181.CrossRefPubMedPubMedCentral
12.
go back to reference Jeong H, Woo Lee Y, Park IH, Noh H, Kim SH, Kim J, Jeon D, Jang HJ, Oh J, On D, et al. Comparison of the pathogenesis of SARS-CoV-2 infection in K18-hACE2 mouse and Syrian golden hamster models. Dis Model Mech. 2022;15:049632.CrossRef Jeong H, Woo Lee Y, Park IH, Noh H, Kim SH, Kim J, Jeon D, Jang HJ, Oh J, On D, et al. Comparison of the pathogenesis of SARS-CoV-2 infection in K18-hACE2 mouse and Syrian golden hamster models. Dis Model Mech. 2022;15:049632.CrossRef
13.
go back to reference Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML. Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng. 2006;94:815–9.CrossRefPubMed Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML. Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng. 2006;94:815–9.CrossRefPubMed
14.
go back to reference Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583:290–5.CrossRefPubMed Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583:290–5.CrossRefPubMed
15.
go back to reference Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 2021;12:288.CrossRefPubMedPubMedCentral Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 2021;12:288.CrossRefPubMedPubMedCentral
16.
go back to reference Baldwin WM 3rd, Valujskikh A, Fairchild RL. The neonatal Fc receptor: Key to homeostasic control of IgG and IgG-related biopharmaceuticals. Am J Transplant. 2019;19:1881–7.CrossRefPubMedPubMedCentral Baldwin WM 3rd, Valujskikh A, Fairchild RL. The neonatal Fc receptor: Key to homeostasic control of IgG and IgG-related biopharmaceuticals. Am J Transplant. 2019;19:1881–7.CrossRefPubMedPubMedCentral
17.
go back to reference Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 2021;17:e1009195.CrossRefPubMedPubMedCentral Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 2021;17:e1009195.CrossRefPubMedPubMedCentral
18.
go back to reference Wang R, Zhang Q, Zhang R, Aw ZQ, Chen P, Wong YH, Hong J, Ju B, Shi X, Ding Q, et al. SARS-CoV-2 Omicron variants reduce antibody neutralization and acquire usage of mouse ACE2. Front Immunol. 2022;13:854952.CrossRefPubMedPubMedCentral Wang R, Zhang Q, Zhang R, Aw ZQ, Chen P, Wong YH, Hong J, Ju B, Shi X, Ding Q, et al. SARS-CoV-2 Omicron variants reduce antibody neutralization and acquire usage of mouse ACE2. Front Immunol. 2022;13:854952.CrossRefPubMedPubMedCentral
19.
go back to reference Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588:498–502.CrossRefPubMedPubMedCentral Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588:498–502.CrossRefPubMedPubMedCentral
20.
go back to reference Kudlacek ST, Metz S, Thiono D, Payne AM, Phan TTN, Tian S, Forsberg LJ, Maguire J, Seim I, Zhang S, et al. Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Sci Adv. 2021;7:eabg4084.CrossRefPubMedPubMedCentral Kudlacek ST, Metz S, Thiono D, Payne AM, Phan TTN, Tian S, Forsberg LJ, Maguire J, Seim I, Zhang S, et al. Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Sci Adv. 2021;7:eabg4084.CrossRefPubMedPubMedCentral
21.
go back to reference Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020;588:682–7.CrossRefPubMedPubMedCentral Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020;588:682–7.CrossRefPubMedPubMedCentral
22.
go back to reference Kumar S, Karuppanan K, Subramaniam G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: a comparative sequence and structural-based computational assessment. J Med Virol. 2022;94:4780–91.CrossRefPubMedPubMedCentral Kumar S, Karuppanan K, Subramaniam G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: a comparative sequence and structural-based computational assessment. J Med Virol. 2022;94:4780–91.CrossRefPubMedPubMedCentral
23.
go back to reference Lee S, Mailar K, Kim MI, Park M, Kim J, Min DH, Heo TH, Bae SK, Choi W, Lee C. Plant-derived purification, chemical synthesis, and in vitro/in vivo evaluation of a resveratrol dimer, viniferin, as an HCV replication inhibitor. Viruses. 2019;11:890.CrossRefPubMedPubMedCentral Lee S, Mailar K, Kim MI, Park M, Kim J, Min DH, Heo TH, Bae SK, Choi W, Lee C. Plant-derived purification, chemical synthesis, and in vitro/in vivo evaluation of a resveratrol dimer, viniferin, as an HCV replication inhibitor. Viruses. 2019;11:890.CrossRefPubMedPubMedCentral
24.
go back to reference Luan B, Wang H, Huynh T. Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett. 2021;595:1454–61.CrossRefPubMedPubMedCentral Luan B, Wang H, Huynh T. Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett. 2021;595:1454–61.CrossRefPubMedPubMedCentral
25.
go back to reference Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94:1728–33.CrossRefPubMed Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94:1728–33.CrossRefPubMed
26.
go back to reference Monday LM, Brar I, Alangaden G, Ramesh MS. SARS-CoV-2 neutralizing antibodies for COVID-19: outcomes for bamlanivimab versus bamlanivimab-etesevimab combination in a racially diverse cohort of patients with significant comorbidities. J Clin Pharm Ther. 2022;47:1438–43.CrossRefPubMed Monday LM, Brar I, Alangaden G, Ramesh MS. SARS-CoV-2 neutralizing antibodies for COVID-19: outcomes for bamlanivimab versus bamlanivimab-etesevimab combination in a racially diverse cohort of patients with significant comorbidities. J Clin Pharm Ther. 2022;47:1438–43.CrossRefPubMed
27.
go back to reference Zhao Y, Wang H, Zhang Q, Hu Y, Xu Y, Liu W. Evaluation of adverse events of bamlanivimab, bamlanivimab/etesevimab used for COVID-19 based on FAERS database. Expert Opin Drug Saf. 2022;22:1–8. Zhao Y, Wang H, Zhang Q, Hu Y, Xu Y, Liu W. Evaluation of adverse events of bamlanivimab, bamlanivimab/etesevimab used for COVID-19 based on FAERS database. Expert Opin Drug Saf. 2022;22:1–8.
28.
go back to reference Venkitakrishnan R, Augustine J, Ramachandran D, Cleetus M. Casirivimab—Imdevimab in Covid 19—early Indian experience. Indian J Tuberc. 2022;69:366–8.CrossRefPubMed Venkitakrishnan R, Augustine J, Ramachandran D, Cleetus M. Casirivimab—Imdevimab in Covid 19—early Indian experience. Indian J Tuberc. 2022;69:366–8.CrossRefPubMed
29.
go back to reference Rhudy C, Bochenek S, Thomas J, St James G, Zeltner M, Platt T. Impact of a subcutaneous casirivimab and imdevimab clinic in outpatients with symptomatic COVID-19: a single-center, propensity-matched cohort study. Am J Health Syst Pharm. 2022;80:130–6.CrossRef Rhudy C, Bochenek S, Thomas J, St James G, Zeltner M, Platt T. Impact of a subcutaneous casirivimab and imdevimab clinic in outpatients with symptomatic COVID-19: a single-center, propensity-matched cohort study. Am J Health Syst Pharm. 2022;80:130–6.CrossRef
30.
go back to reference Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608:593–602.CrossRefPubMedPubMedCentral Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608:593–602.CrossRefPubMedPubMedCentral
31.
go back to reference Guo Y, Huang L, Zhang G, Yao Y, Zhou H, Shen S, Shen B, Li B, Li X, Zhang Q, et al. A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nat Commun. 2021;12:2623.CrossRefPubMedPubMedCentral Guo Y, Huang L, Zhang G, Yao Y, Zhou H, Shen S, Shen B, Li B, Li X, Zhang Q, et al. A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nat Commun. 2021;12:2623.CrossRefPubMedPubMedCentral
32.
go back to reference Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcgammaR pathway. J Virol. 2011;85:10582–97.CrossRefPubMedPubMedCentral Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcgammaR pathway. J Virol. 2011;85:10582–97.CrossRefPubMedPubMedCentral
33.
go back to reference Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, Zhu H, Liu J, Xu Y, Xie J, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis. 2016;2:361–76.CrossRefPubMedPubMedCentral Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, Zhu H, Liu J, Xu Y, Xie J, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis. 2016;2:361–76.CrossRefPubMedPubMedCentral
Metadata
Title
Development of a neutralization monoclonal antibody with a broad neutralizing effect against SARS-CoV-2 variants
Authors
Hae Li Ko
Deuk-ki Lee
Younghyeon Kim
Hui Jeong Jang
Youn Woo Lee
Ho-Young Lee
Sang-Hyuk Seok
Jun Won Park
Jin-Kyung Limb
Da In On
Jun-Won Yun
Kwang-Soo Lyoo
Daesub Song
Minjoo Yeom
Hanbyeul Lee
Je Kyung Seong
Sungjin Lee
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
SARS-CoV-2
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02230-9

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.