Skip to main content
Top
Published in: Immunity & Ageing 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research

The oldest unvaccinated Covid-19 survivors in South America

Authors: Mateus V. de Castro, Monize V. R. Silva, Michel S. Naslavsky, Marilia O. Scliar, Kelly Nunes, Maria Rita Passos-Bueno, Erick C. Castelli, Jhosiene Y. Magawa, Flávia L. Adami, Ana I. S. Moretti, Vivian L. de Oliveira, Silvia B. Boscardin, Edecio Cunha-Neto, Jorge Kalil, Emmanuelle Jouanguy, Paul Bastard, Jean-Laurent Casanova, Mauricio Quiñones-Vega, Patricia Sosa-Acosta, Jéssica de S. Guedes, Natália P. de Almeida, Fábio C. S. Nogueira, Gilberto B. Domont, Keity S. Santos, Mayana Zatz

Published in: Immunity & Ageing | Issue 1/2022

Login to get access

Abstract

Background

Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated.

Results

Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN.

Conclusion

These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID–19 inpatient on the severity of the disease: A meta-analysis. Int J Clin Pract. 2021;75(10):e14640.CrossRef Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID–19 inpatient on the severity of the disease: A meta-analysis. Int J Clin Pract. 2021;75(10):e14640.CrossRef
3.
go back to reference Hägg S, Jylhävä J, Wang Y, Xu H, Metzner C, Annetorp M. etal. Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. J Am Med Dir Assoc. 2020;21(11):1555–9.e2.CrossRef Hägg S, Jylhävä J, Wang Y, Xu H, Metzner C, Annetorp M. etal. Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. J Am Med Dir Assoc. 2020;21(11):1555–9.e2.CrossRef
4.
go back to reference Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N. etal. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID–19. Sci Rep. 2021;20(1):8562.CrossRef Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N. etal. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID–19. Sci Rep. 2021;20(1):8562.CrossRef
8.
go back to reference López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.
9.
go back to reference Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. An Acad Bras Ciênc. 2017;89:285–99.CrossRef Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. An Acad Bras Ciênc. 2017;89:285–99.CrossRef
10.
go back to reference Amore S, Puppo E, Melara J, Terracciano E, Gentili S, Liotta G. Impact of COVID–19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci Rep. 2021;15(1):12530.CrossRef Amore S, Puppo E, Melara J, Terracciano E, Gentili S, Liotta G. Impact of COVID–19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci Rep. 2021;15(1):12530.CrossRef
12.
go back to reference Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol OncolJ Hematol Oncol. 2020;13(1):151.CrossRef Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol OncolJ Hematol Oncol. 2020;13(1):151.CrossRef
13.
go back to reference Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing A. 2010;7:7. Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing A. 2010;7:7.
15.
go back to reference Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID–19 Immune Response. Front Immunol. 2020;7:11:1748.CrossRef Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID–19 Immune Response. Front Immunol. 2020;7:11:1748.CrossRef
16.
go back to reference Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, etal. Association of Markers of Inflammation,the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci. 2022;77(4):826–36. Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, etal. Association of Markers of Inflammation,the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci. 2022;77(4):826–36.
17.
go back to reference Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.CrossRef Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.CrossRef
18.
go back to reference Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;3(23):2255–73.CrossRef Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;3(23):2255–73.CrossRef
19.
go back to reference Cron RQ.COVID–19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 2021;3(4):e236–7. Cron RQ.COVID–19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 2021;3(4):e236–7.
21.
go back to reference Yuki K, Fujiogi M, Koutsogiannaki S. COVID–19 pathophysiology: A review. Clin Immunol Orlando Fla. 2020;215:108427.CrossRef Yuki K, Fujiogi M, Koutsogiannaki S. COVID–19 pathophysiology: A review. Clin Immunol Orlando Fla. 2020;215:108427.CrossRef
22.
go back to reference Parasher A. COVID–19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312–20.CrossRef Parasher A. COVID–19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312–20.CrossRef
23.
go back to reference Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, etal. Auto antibodies against type IIFNs in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4585. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, etal. Auto antibodies against type IIFNs in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4585.
24.
go back to reference Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, etal. Auto antibodies neutralizing type IIFNs are present in~ 4%of uninfected individuals over 70 years old and account for~ 20% of COVID– 19 deaths. SciImmunol. 2021;6(62): eabl4340. Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, etal. Auto antibodies neutralizing type IIFNs are present in~ 4%of uninfected individuals over 70 years old and account for~ 20% of COVID– 19 deaths. SciImmunol. 2021;6(62): eabl4340.
25.
go back to reference Kordowitzki P.Centenarians and COVID–19: Is There a Link between Longevity and Better Immune Defense? Gerontology. 2021;1–2. Kordowitzki P.Centenarians and COVID–19: Is There a Link between Longevity and Better Immune Defense? Gerontology. 2021;1–2.
26.
go back to reference Guerini FR, Cesari M, Arosio B. Hypothetical COVID–19 protection mechanism: hints from centenarians. Immun Ageing. 2021;30(1):15CrossRef Guerini FR, Cesari M, Arosio B. Hypothetical COVID–19 protection mechanism: hints from centenarians. Immun Ageing. 2021;30(1):15CrossRef
27.
go back to reference Foley MK, Searle SD, Toloue A, Booth R, Falkenham A, Falzarano D. etal.Centenarians and extremely old people living with frailty can elicit durable SARS-CoV–2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine. 2021;37:100975.CrossRef Foley MK, Searle SD, Toloue A, Booth R, Falkenham A, Falzarano D. etal.Centenarians and extremely old people living with frailty can elicit durable SARS-CoV–2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine. 2021;37:100975.CrossRef
28.
go back to reference Kong Y, Cai C, Ling L, Zeng L, Wu M, Wu Y. etal. Successful treatment of a centenarian with coronavirus disease 2019 (COVID–19) using convalescent plasma. Transfus Apher Sci. 2020;59(5):102820.CrossRef Kong Y, Cai C, Ling L, Zeng L, Wu M, Wu Y. etal. Successful treatment of a centenarian with coronavirus disease 2019 (COVID–19) using convalescent plasma. Transfus Apher Sci. 2020;59(5):102820.CrossRef
29.
go back to reference Toppi E, De Molfetta V, Zarletti G, Tiberi M, Bossù P, Scapigliati G. The Anti-SARS-CoV–2 Antibody Response in a Centenarian Woman: A Case of Long-Term Memory? Viruses. 2021;13(9):1704. Toppi E, De Molfetta V, Zarletti G, Tiberi M, Bossù P, Scapigliati G. The Anti-SARS-CoV–2 Antibody Response in a Centenarian Woman: A Case of Long-Term Memory? Viruses. 2021;13(9):1704.
30.
go back to reference Siopis G. Supercentenarians that Survived COVID–19. Aging Dis. 2021;12(7):1539–40. Siopis G. Supercentenarians that Survived COVID–19. Aging Dis. 2021;12(7):1539–40.
31.
go back to reference Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T. etal. The role of a mutant CCR5 allele in HIV–1 transmission and disease progression. Nat Med. 1996;2(11):1240–3.CrossRef Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T. etal. The role of a mutant CCR5 allele in HIV–1 transmission and disease progression. Nat Med. 1996;2(11):1240–3.CrossRef
32.
go back to reference Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S,etal.Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769–75. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S,etal.Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769–75.
33.
go back to reference Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M. etal. A whole-genome association study of major determinants for host control of HIV–1. Science. 2007;317(5840):944–7.CrossRef Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M. etal. A whole-genome association study of major determinants for host control of HIV–1. Science. 2007;317(5840):944–7.CrossRef
34.
go back to reference Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q. etal. A global effort to dissect the human genetic basis of resistance to SARS-CoV–2 infection. Nat Immunol. 2022;23(2):159–64.CrossRef Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q. etal. A global effort to dissect the human genetic basis of resistance to SARS-CoV–2 infection. Nat Immunol. 2022;23(2):159–64.CrossRef
36.
go back to reference Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T,etal.Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun. 2022;13(1):1004. Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T,etal.Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun. 2022;13(1):1004.
37.
go back to reference Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N. etal. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38(7):751–63.CrossRef Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N. etal. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38(7):751–63.CrossRef
38.
go back to reference Souza AM de, Resende SS, Sousa TN de, Brito CFA de. Asystematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol. 2019;42:495–508. Souza AM de, Resende SS, Sousa TN de, Brito CFA de. Asystematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol. 2019;42:495–508.
39.
go back to reference Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J,etal. In bornerrors of type IIFN immunity in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4570. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J,etal. In bornerrors of type IIFN immunity in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4570.
40.
go back to reference Zhang Q, Bastard P, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID–19 pneumonia. Nature. 2022;603(7902):587–98.CrossRef Zhang Q, Bastard P, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID–19 pneumonia. Nature. 2022;603(7902):587–98.CrossRef
41.
go back to reference Marchi S, Viviani S, Remarque EJ, Ruello A, Bombardieri E, Bollati V. etal. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV–2 infection. PLoS ONE. 2021;16(7):e0253977.CrossRef Marchi S, Viviani S, Remarque EJ, Ruello A, Bombardieri E, Bollati V. etal. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV–2 infection. PLoS ONE. 2021;16(7):e0253977.CrossRef
42.
go back to reference Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A. etal. Neutralizing Antibody Responses to SARS-CoV–2 in Recovered COVID–19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol. 2022;13:830710.CrossRef Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A. etal. Neutralizing Antibody Responses to SARS-CoV–2 in Recovered COVID–19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol. 2022;13:830710.CrossRef
43.
go back to reference Dugas M, Grote-Westrick T, Merle U, Fontenay M, Kremer AE, Hanses F. etal.Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID–19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2021;139:104847.CrossRef Dugas M, Grote-Westrick T, Merle U, Fontenay M, Kremer AE, Hanses F. etal.Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID–19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2021;139:104847.CrossRef
44.
go back to reference Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, etal. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV–2 antibody response. Cell Host Microbe. 2022;30(1):83–96.e4. Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, etal. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV–2 antibody response. Cell Host Microbe. 2022;30(1):83–96.e4.
45.
go back to reference Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME, Schanz MM, etal. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV–2 immunity. Nat Commun. 2021;12(1):6703. Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME, Schanz MM, etal. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV–2 immunity. Nat Commun. 2021;12(1):6703.
46.
go back to reference Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Life long Anti-Influenza Virus Immune Responses. J Immunol Baltim Md 1950. 2019;202(2):335–40. Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Life long Anti-Influenza Virus Immune Responses. J Immunol Baltim Md 1950. 2019;202(2):335–40.
47.
go back to reference Debisarun PA, Gössling KL, Bulut O, Kilic G, Zoodsma M, Liu Z. etal.Induction of trained immunity by influenza vaccination - impact on COVID–19. PLOS Pathog. 2021;17(10):e1009928.CrossRef Debisarun PA, Gössling KL, Bulut O, Kilic G, Zoodsma M, Liu Z. etal.Induction of trained immunity by influenza vaccination - impact on COVID–19. PLOS Pathog. 2021;17(10):e1009928.CrossRef
48.
go back to reference Poulain M, Chambre D, Pes GM. Centenarians exposed to the Spanish flu in their early life better survived to COVID–19. Aging. 2021;13(18):21855–65. Poulain M, Chambre D, Pes GM. Centenarians exposed to the Spanish flu in their early life better survived to COVID–19. Aging. 2021;13(18):21855–65.
49.
go back to reference Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, etal. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–6. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, etal. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–6.
50.
52.
go back to reference Rijkers GT, van Overveld FJ.The “original antigenic sin” and its relevance for SARS-CoV–2 (COVID–19) vaccination. Clin Immunol Commun. 2021;1:13–6. Rijkers GT, van Overveld FJ.The “original antigenic sin” and its relevance for SARS-CoV–2 (COVID–19) vaccination. Clin Immunol Commun. 2021;1:13–6.
53.
go back to reference Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H,etal. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci. 2019;116(48):24242–51. Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H,etal. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci. 2019;116(48):24242–51.
54.
go back to reference Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID–19. Front Chem. 2021;10:9:685196.CrossRef Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID–19. Front Chem. 2021;10:9:685196.CrossRef
55.
go back to reference Codo AC, Davanzo GG, MonteiroLdeB,deSouzaGF, Muraro SP, Virgilio-da-Silva JV,etal. Elevated Glucose Levels Favor SARS-CoV–2 Infection and Monocyte Response through a HIF–1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32(3):437–446.e5. Codo AC, Davanzo GG, MonteiroLdeB,deSouzaGF, Muraro SP, Virgilio-da-Silva JV,etal. Elevated Glucose Levels Favor SARS-CoV–2 Infection and Monocyte Response through a HIF–1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32(3):437–446.e5.
56.
go back to reference Alomar FA, Alshakhs MN, Abohelaika S, Almarzouk HM, Almualim M, Al-Ali AK. etal. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID–19 patients. Sci Rep. 2022;9(1):9510.CrossRef Alomar FA, Alshakhs MN, Abohelaika S, Almarzouk HM, Almualim M, Al-Ali AK. etal. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID–19 patients. Sci Rep. 2022;9(1):9510.CrossRef
57.
go back to reference Medini H, Zirman A, Mishmar D. Immune system cells from COVID–19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis. iScience. 2021;17(12):103471.CrossRef Medini H, Zirman A, Mishmar D. Immune system cells from COVID–19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis. iScience. 2021;17(12):103471.CrossRef
58.
go back to reference Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S. etal. Metabolic Perturbation Associated With COVID–19 Disease Severity and SARS-CoV–2 Replication. Mol Cell Proteomics MCP. 2021;20:100159.CrossRef Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S. etal. Metabolic Perturbation Associated With COVID–19 Disease Severity and SARS-CoV–2 Replication. Mol Cell Proteomics MCP. 2021;20:100159.CrossRef
59.
go back to reference Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;1:479–480:609–18.CrossRef Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;1:479–480:609–18.CrossRef
60.
go back to reference Kishimoto N, Yamamoto K, Abe T, Yasuoka N, Takamune N, Misumi S. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV–1 particles to maintain infectivity. Biochem Biophys Res Commun. 2021;549:187–93. Kishimoto N, Yamamoto K, Abe T, Yasuoka N, Takamune N, Misumi S. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV–1 particles to maintain infectivity. Biochem Biophys Res Commun. 2021;549:187–93.
61.
go back to reference Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y. etal. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication. Virol Sin. 2021;36(6):1532–42.CrossRef Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y. etal. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication. Virol Sin. 2021;36(6):1532–42.CrossRef
63.
go back to reference Calder PC. Eicosanoids. Essays Biochem. 2020;64(3):423–41. Calder PC. Eicosanoids. Essays Biochem. 2020;64(3):423–41.
64.
go back to reference Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID–19☆,☆☆,★,★★. Prostaglandins Leukot Essent Fatty Acids. 2020;162:102183.CrossRef Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID–19☆,☆☆,★,★★. Prostaglandins Leukot Essent Fatty Acids. 2020;162:102183.CrossRef
65.
go back to reference Adili R, Hawley M, Holinstat M. Regulation of platelet function and thrombosis by omega–3 and omega–6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018;139:10–8.CrossRef Adili R, Hawley M, Holinstat M. Regulation of platelet function and thrombosis by omega–3 and omega–6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018;139:10–8.CrossRef
66.
go back to reference Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega–3 fatty acids and death from COVID–19: A pilot study. Prostaglandins Leukot Essent Fatty Acids. 2021;166:102250.CrossRef Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega–3 fatty acids and death from COVID–19: A pilot study. Prostaglandins Leukot Essent Fatty Acids. 2021;166:102250.CrossRef
67.
go back to reference Baral PK, Amin MT, Rashid MMO, Hossain MS. Assessment of Polyunsaturated Fatty Acids on COVID–19-Associated Risk Reduction. Rev Bras Farmacogn Orgao Of Soc Bras Farmacogn. 2022;32(1):50–64.CrossRef Baral PK, Amin MT, Rashid MMO, Hossain MS. Assessment of Polyunsaturated Fatty Acids on COVID–19-Associated Risk Reduction. Rev Bras Farmacogn Orgao Of Soc Bras Farmacogn. 2022;32(1):50–64.CrossRef
68.
go back to reference White CF, Pellis L, Keeling MJ, Penman BS. Detecting HLA-infectious disease associations for multi-strain pathogens. Infect Genet Evol. 2020;83:104344.CrossRef White CF, Pellis L, Keeling MJ, Penman BS. Detecting HLA-infectious disease associations for multi-strain pathogens. Infect Genet Evol. 2020;83:104344.CrossRef
69.
go back to reference Sanchez-Mazas A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150:w20214. Sanchez-Mazas A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150:w20214.
70.
go back to reference Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85.,Table of Contents.CrossRef Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85.,Table of Contents.CrossRef
71.
go back to reference Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother CII. 2007;56(1):95–100.CrossRef Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother CII. 2007;56(1):95–100.CrossRef
73.
go back to reference Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;7(10):702–9.CrossRef Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;7(10):702–9.CrossRef
76.
go back to reference Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann AJ, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV–2 patients. Sci Immunol. 2020;5(48):eabc8413. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann AJ, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV–2 patients. Sci Immunol. 2020;5(48):eabc8413.
77.
go back to reference Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC. etal. Measuring SARS-CoV–2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020;2(11):e20201181.CrossRef Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC. etal. Measuring SARS-CoV–2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020;2(11):e20201181.CrossRef
78.
go back to reference Castelli EC, Paz MA, Souza AS, Ramalho J, Mendes-Junior CT. Hla-mapper: An application to optimize the mapping of HLA sequences produced by massively parallel sequencing procedures. Hum Immunol. 2018;79(9):678–84.CrossRef Castelli EC, Paz MA, Souza AS, Ramalho J, Mendes-Junior CT. Hla-mapper: An application to optimize the mapping of HLA sequences produced by massively parallel sequencing procedures. Hum Immunol. 2018;79(9):678–84.CrossRef
80.
go back to reference Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.CrossRef Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.CrossRef
81.
go back to reference Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR. etal. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRef Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR. etal. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRef
82.
go back to reference Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P. etal.Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367(6484):eaay5012.CrossRef Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P. etal.Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367(6484):eaay5012.CrossRef
Metadata
Title
The oldest unvaccinated Covid-19 survivors in South America
Authors
Mateus V. de Castro
Monize V. R. Silva
Michel S. Naslavsky
Marilia O. Scliar
Kelly Nunes
Maria Rita Passos-Bueno
Erick C. Castelli
Jhosiene Y. Magawa
Flávia L. Adami
Ana I. S. Moretti
Vivian L. de Oliveira
Silvia B. Boscardin
Edecio Cunha-Neto
Jorge Kalil
Emmanuelle Jouanguy
Paul Bastard
Jean-Laurent Casanova
Mauricio Quiñones-Vega
Patricia Sosa-Acosta
Jéssica de S. Guedes
Natália P. de Almeida
Fábio C. S. Nogueira
Gilberto B. Domont
Keity S. Santos
Mayana Zatz
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2022
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-022-00310-y

Other articles of this Issue 1/2022

Immunity & Ageing 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine