Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | SARS-CoV-2 | Review

Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders

Authors: Kritika Tyagi, Prachi Rai, Anuj Gautam, Harjeet Kaur, Sumeet Kapoor, Ashish Suttee, Pradeep Kumar Jaiswal, Akanksha Sharma, Gurpal Singh, Ravi Pratap Barnwal

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood–brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes.

Aim

The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain–Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed.

Main body

There have been reports that the SARS-CoV-2 virus can cross the blood–brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain.

Conclusions

SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Literature
1.
go back to reference Ramani A, Pranty A-I, Gopalakrishnan J. Neurotropic Effects of SARS-CoV-2 modeled by the human brain organoids. Stem cell reports. 2021;16(3):373–84.PubMedPubMedCentral Ramani A, Pranty A-I, Gopalakrishnan J. Neurotropic Effects of SARS-CoV-2 modeled by the human brain organoids. Stem cell reports. 2021;16(3):373–84.PubMedPubMedCentral
2.
go back to reference Bhadoria P, Gupta G, Agarwal A. Viral pandemics in the past two decades: an overview. J Fam Med Prim care. 2021;10(8):2745–50. Bhadoria P, Gupta G, Agarwal A. Viral pandemics in the past two decades: an overview. J Fam Med Prim care. 2021;10(8):2745–50.
3.
go back to reference Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. Am J Respir Crit Care Med. 2020;202(5):651–9.PubMedPubMedCentral Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. Am J Respir Crit Care Med. 2020;202(5):651–9.PubMedPubMedCentral
4.
go back to reference Kaur M, Sharma A, Kumar S, Singh G, Barnwal RP. SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. Int J Biol Macromol. 2021;179:45–60.PubMedPubMedCentral Kaur M, Sharma A, Kumar S, Singh G, Barnwal RP. SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. Int J Biol Macromol. 2021;179:45–60.PubMedPubMedCentral
5.
go back to reference Pelkmans L. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta Mol Cell Res. 2005;1746(3):295–304. Pelkmans L. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta Mol Cell Res. 2005;1746(3):295–304.
6.
7.
go back to reference Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentral Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentral
8.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentral Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentral
11.
go back to reference van den Pol AN. Viral infection leading to brain dysfunction: more prevalent than appreciated? Neuron. 2009;64(1):17–20.PubMedPubMedCentral van den Pol AN. Viral infection leading to brain dysfunction: more prevalent than appreciated? Neuron. 2009;64(1):17–20.PubMedPubMedCentral
12.
go back to reference Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–76.PubMed Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–76.PubMed
13.
go back to reference Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–8.PubMedPubMedCentral Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–8.PubMedPubMedCentral
14.
go back to reference Alonazi B, Farghaly AM, Mostafa MA, Al-Watban JA, Zindani SA, Altaimi F, et al. Brain MRI in SARS-CoV-2 pneumonia patients with newly developed neurological manifestations suggestive of brain involvement. Sci Reports |. 123AD;11:20476. Alonazi B, Farghaly AM, Mostafa MA, Al-Watban JA, Zindani SA, Altaimi F, et al. Brain MRI in SARS-CoV-2 pneumonia patients with newly developed neurological manifestations suggestive of brain involvement. Sci Reports |. 123AD;11:20476.
15.
go back to reference Guadarrama-Ortiz P, Choreño-Parra JA, Sánchez-Martínez CM, Pacheco-Sánchez FJ, Rodríguez-Nava AI, García-Quintero G. Neurological Aspects of SARS-CoV-2 infection: mechanisms and manifestations. Front Neurol. 2020;11:1039.PubMedPubMedCentral Guadarrama-Ortiz P, Choreño-Parra JA, Sánchez-Martínez CM, Pacheco-Sánchez FJ, Rodríguez-Nava AI, García-Quintero G. Neurological Aspects of SARS-CoV-2 infection: mechanisms and manifestations. Front Neurol. 2020;11:1039.PubMedPubMedCentral
16.
go back to reference Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, et al. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev. 2021;58:1–15.PubMedPubMedCentral Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, et al. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev. 2021;58:1–15.PubMedPubMedCentral
17.
go back to reference Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2022;42(1):217–24.PubMed Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2022;42(1):217–24.PubMed
18.
go back to reference Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29.PubMedPubMedCentral Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29.PubMedPubMedCentral
19.
go back to reference Gattringer T, Gressenberger P, Gary T, Wölfler A, Kneihsl M, Raggam RB. Successful management of vaccine-induced immune thrombotic thrombocytopenia-related cerebral sinus venous thrombosis after ChAdOx1 nCov-19 vaccination. Vol. 7, Stroke and vascular neurology. England; 2022. p. 86–8. Gattringer T, Gressenberger P, Gary T, Wölfler A, Kneihsl M, Raggam RB. Successful management of vaccine-induced immune thrombotic thrombocytopenia-related cerebral sinus venous thrombosis after ChAdOx1 nCov-19 vaccination. Vol. 7, Stroke and vascular neurology. England; 2022. p. 86–8.
20.
go back to reference Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17(2):307–20.PubMedPubMedCentral Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17(2):307–20.PubMedPubMedCentral
21.
go back to reference Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.PubMed Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.PubMed
23.
go back to reference Aird WC. Phenotypic heterogeneity of the endothelium: II Representative vascular beds. Circ Res. 2007;100(2):174–90.PubMed Aird WC. Phenotypic heterogeneity of the endothelium: II Representative vascular beds. Circ Res. 2007;100(2):174–90.PubMed
24.
go back to reference Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4):497–511.PubMed Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4):497–511.PubMed
26.
go back to reference Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? Vol. 99, Journal of Neuroscience Research. Wiley; 2021. p. 750–77. Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? Vol. 99, Journal of Neuroscience Research. Wiley; 2021. p. 750–77.
27.
go back to reference MacDougall M, El-Hajj Sleiman J, Beauchemin P, Rangachari M. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. www.frontiersin.org MacDougall M, El-Hajj Sleiman J, Beauchemin P, Rangachari M. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. www.​frontiersin.​org
28.
go back to reference Blood-Brain AA, Overview B. Structural and functional correlation. Neural Plast. 2021;2021:6564585. Blood-Brain AA, Overview B. Structural and functional correlation. Neural Plast. 2021;2021:6564585.
29.
go back to reference Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, et al. Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain. 2022;15(1):49.PubMedPubMedCentral Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, et al. Blood–brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain. 2022;15(1):49.PubMedPubMedCentral
30.
go back to reference Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337.PubMedPubMedCentral Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337.PubMedPubMedCentral
31.
go back to reference Chen Z, Li G. Immune response and blood–brain barrier dysfunction during viral neuroinvasion. Innate Immun. 2021;27(2):109–17.PubMed Chen Z, Li G. Immune response and blood–brain barrier dysfunction during viral neuroinvasion. Innate Immun. 2021;27(2):109–17.PubMed
32.
go back to reference Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135.PubMedPubMedCentral Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135.PubMedPubMedCentral
34.
35.
go back to reference Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971;221(6):1629–39.PubMed Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971;221(6):1629–39.PubMed
36.
go back to reference Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24.PubMedPubMedCentral Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24.PubMedPubMedCentral
37.
go back to reference Nicholls JM, Butany J, Poon LLM, Chan KH, Beh SL, Poutanen S, et al. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 2006;3(2):e27.PubMedPubMedCentral Nicholls JM, Butany J, Poon LLM, Chan KH, Beh SL, Poutanen S, et al. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 2006;3(2):e27.PubMedPubMedCentral
38.
go back to reference Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620.PubMedPubMedCentral Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620.PubMedPubMedCentral
39.
go back to reference Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.PubMedPubMedCentral Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.PubMedPubMedCentral
40.
go back to reference Park T-E, Singh B, Li H, Lee J-Y, Kang S-K, Choi Y-J, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71.PubMed Park T-E, Singh B, Li H, Lee J-Y, Kang S-K, Choi Y-J, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71.PubMed
41.
go back to reference Yang C-M, Lin C-C, Lee I-T, Lin Y-H, Yang CM, Chen W-J, et al. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation. 2012;9:12.PubMedPubMedCentral Yang C-M, Lin C-C, Lee I-T, Lin Y-H, Yang CM, Chen W-J, et al. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation. 2012;9:12.PubMedPubMedCentral
42.
go back to reference Chaturvedi UC, Dhawan R, Khanna M, Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol. 1991;72(Pt 4):859–66.PubMed Chaturvedi UC, Dhawan R, Khanna M, Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol. 1991;72(Pt 4):859–66.PubMed
43.
go back to reference Chiu C-F, Chu L-W, Liao I-C, Simanjuntak Y, Lin Y-L, Juan C-C, et al. The Mechanism of the zika virus crossing the placental barrier and the blood-brain barrier. Front Microbiol. 2020;11:214.PubMedPubMedCentral Chiu C-F, Chu L-W, Liao I-C, Simanjuntak Y, Lin Y-L, Juan C-C, et al. The Mechanism of the zika virus crossing the placental barrier and the blood-brain barrier. Front Microbiol. 2020;11:214.PubMedPubMedCentral
46.
go back to reference Neil-Dwyer G, Bartlett J, McAinsh J, Cruickshank JM. Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol. 1981;11(6):549–53.PubMedPubMedCentral Neil-Dwyer G, Bartlett J, McAinsh J, Cruickshank JM. Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol. 1981;11(6):549–53.PubMedPubMedCentral
47.
go back to reference Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2019;11:373.PubMed Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2019;11:373.PubMed
48.
go back to reference Grabrucker AM, Ruozi B, Belletti D, Pederzoli F, Forni F, Vandelli MA, et al. Nanoparticle transport across the blood brain barrier. Tissue barriers. 2016;4(1):e1153568.PubMedPubMedCentral Grabrucker AM, Ruozi B, Belletti D, Pederzoli F, Forni F, Vandelli MA, et al. Nanoparticle transport across the blood brain barrier. Tissue barriers. 2016;4(1):e1153568.PubMedPubMedCentral
49.
go back to reference Zhi K, Raji B, Nookala AR, Khan MM, Nguyen XH, Sakshi S, et al. PLGA nanoparticle-based formulations to cross the blood-brain barrier for drug delivery: from R&D to cGMP. Pharmaceutics. 2021;13(4):500.PubMedPubMedCentral Zhi K, Raji B, Nookala AR, Khan MM, Nguyen XH, Sakshi S, et al. PLGA nanoparticle-based formulations to cross the blood-brain barrier for drug delivery: from R&D to cGMP. Pharmaceutics. 2021;13(4):500.PubMedPubMedCentral
50.
go back to reference Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, et al. Use of Polyamidoamine Dendrimers in Brain Diseases. Molecules. 2018;23(9):2238.PubMedPubMedCentral Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, et al. Use of Polyamidoamine Dendrimers in Brain Diseases. Molecules. 2018;23(9):2238.PubMedPubMedCentral
51.
go back to reference Gonzalez-Carter D, Goode AE, Kiryushko D, Masuda S, Hu S, Lopes-Rodrigues R, et al. Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale. 2019;11(45):22054–69.PubMed Gonzalez-Carter D, Goode AE, Kiryushko D, Masuda S, Hu S, Lopes-Rodrigues R, et al. Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale. 2019;11(45):22054–69.PubMed
52.
go back to reference Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.PubMed Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.PubMed
53.
go back to reference Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci. 2021;22(5):2681.PubMedPubMedCentral Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci. 2021;22(5):2681.PubMedPubMedCentral
55.
go back to reference Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol. 2003;15(4):414–22.PubMed Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol. 2003;15(4):414–22.PubMed
56.
go back to reference Belleudi F, Visco V, Ceridono M, Leone L, Muraro R, Frati L, et al. Ligand-induced clathrin-mediated endocytosis of the keratinocyte growth factor receptor occurs independently of either phosphorylation or recruitment of eps15. FEBS Lett. 2003;553(3):262–70.PubMed Belleudi F, Visco V, Ceridono M, Leone L, Muraro R, Frati L, et al. Ligand-induced clathrin-mediated endocytosis of the keratinocyte growth factor receptor occurs independently of either phosphorylation or recruitment of eps15. FEBS Lett. 2003;553(3):262–70.PubMed
57.
go back to reference Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.PubMed Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.PubMed
58.
go back to reference Pearse BM, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol. 2000;10(2):220–8.PubMed Pearse BM, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol. 2000;10(2):220–8.PubMed
59.
go back to reference Sorkin A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol. 2004;16(4):392–9.PubMed Sorkin A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol. 2004;16(4):392–9.PubMed
60.
go back to reference Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol. 2005;150(9):1783–96.PubMed Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol. 2005;150(9):1783–96.PubMed
61.
go back to reference Hommelgaard AM, Roepstorff K, Vilhardt F, Torgersen ML, Sandvig K, van Deurs B. Caveolae: stable membrane domains with a potential for internalization. Traffic. 2005;6(9):720–4.PubMed Hommelgaard AM, Roepstorff K, Vilhardt F, Torgersen ML, Sandvig K, van Deurs B. Caveolae: stable membrane domains with a potential for internalization. Traffic. 2005;6(9):720–4.PubMed
62.
go back to reference Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang C-M, et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci. 2005;1047:166–72.PubMed Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang C-M, et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci. 2005;1047:166–72.PubMed
63.
go back to reference Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, et al. Internalization of Echovirus 1 in Caveolae. J Virol. 2002;76(4):1856–65.PubMedPubMedCentral Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, et al. Internalization of Echovirus 1 in Caveolae. J Virol. 2002;76(4):1856–65.PubMedPubMedCentral
64.
go back to reference Bousarghin L, Touzé A, Sizaret P-Y, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol. 2003;77(6):3846–50.PubMedPubMedCentral Bousarghin L, Touzé A, Sizaret P-Y, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol. 2003;77(6):3846–50.PubMedPubMedCentral
65.
go back to reference Empig CJ, Goldsmith MA. Association of the caveola vesicular system with cellular entry by filoviruses. J Virol. 2002;76(10):5266–70.PubMedPubMedCentral Empig CJ, Goldsmith MA. Association of the caveola vesicular system with cellular entry by filoviruses. J Virol. 2002;76(10):5266–70.PubMedPubMedCentral
66.
go back to reference Beer C, Andersen DS, Rojek A, Pedersen L. Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol. 2005;79(16):10776–87.PubMedPubMedCentral Beer C, Andersen DS, Rojek A, Pedersen L. Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol. 2005;79(16):10776–87.PubMedPubMedCentral
67.
go back to reference Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.PubMedPubMedCentral Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.PubMedPubMedCentral
68.
go back to reference Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss H-P, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26(7):1270–7.PubMedPubMedCentral Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss H-P, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26(7):1270–7.PubMedPubMedCentral
69.
go back to reference Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007;81(16):8722–9.PubMedPubMedCentral Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007;81(16):8722–9.PubMedPubMedCentral
70.
go back to reference Huang I-C, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, et al. SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. J Biol Chem. 2006;281(6):3198–203.PubMed Huang I-C, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, et al. SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. J Biol Chem. 2006;281(6):3198–203.PubMed
71.
go back to reference Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.PubMed Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20.PubMed
72.
go back to reference Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.PubMedPubMedCentral Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.PubMedPubMedCentral
73.
go back to reference Xu J, Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell Mol Neurobiol. 2022;42(1):305–9.PubMed Xu J, Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell Mol Neurobiol. 2022;42(1):305–9.PubMed
74.
go back to reference Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–96.PubMed Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–96.PubMed
75.
go back to reference Mao X-Y, Jin W-L. The COVID-19 pandemic: consideration for brain infection. Neuroscience. 2020;437:130–1.PubMed Mao X-Y, Jin W-L. The COVID-19 pandemic: consideration for brain infection. Neuroscience. 2020;437:130–1.PubMed
76.
go back to reference Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712–22.PubMed Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712–22.PubMed
77.
go back to reference Li Z, He W, Lan Y, Zhao K, Lv X, Lu H, et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. PeerJ. 2016;4:e2443.PubMedPubMedCentral Li Z, He W, Lan Y, Zhao K, Lv X, Lu H, et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. PeerJ. 2016;4:e2443.PubMedPubMedCentral
78.
go back to reference Chasey D, Alexander DJ. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells. Arch Virol. 1976;52(1–2):101–11.PubMedPubMedCentral Chasey D, Alexander DJ. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells. Arch Virol. 1976;52(1–2):101–11.PubMedPubMedCentral
80.
go back to reference Ware LB. Physiological and biological heterogeneity in COVID-19-associated acute respiratory distress syndrome. Lancet Respir Med. 2020;8(12):1163–5.PubMedPubMedCentral Ware LB. Physiological and biological heterogeneity in COVID-19-associated acute respiratory distress syndrome. Lancet Respir Med. 2020;8(12):1163–5.PubMedPubMedCentral
81.
go back to reference Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.PubMedPubMedCentral Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.PubMedPubMedCentral
83.
go back to reference McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 Illness. Am J Respir Crit Care Med. 2020;202(6):812–21.PubMedPubMedCentral McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 Illness. Am J Respir Crit Care Med. 2020;202(6):812–21.PubMedPubMedCentral
85.
go back to reference Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood-brain barrier dysfunction. J Neuroinflammation. 2022;19(1):222.PubMedPubMedCentral Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood-brain barrier dysfunction. J Neuroinflammation. 2022;19(1):222.PubMedPubMedCentral
86.
go back to reference Lyra e Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology. 2022;209:109023.PubMedPubMedCentral Lyra e Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology. 2022;209:109023.PubMedPubMedCentral
87.
go back to reference Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimer’s Dement. 2021;17(6):1056–65. Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimer’s Dement. 2021;17(6):1056–65.
88.
89.
go back to reference Stefanou M-I, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:20406223221076890.PubMedPubMedCentral Stefanou M-I, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:20406223221076890.PubMedPubMedCentral
90.
go back to reference Warren-Gash C, Forbes HJ, Williamson E, Breuer J, Hayward AC, Mavrodaris A, et al. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep. 2019;9(1):4743.PubMedPubMedCentral Warren-Gash C, Forbes HJ, Williamson E, Breuer J, Hayward AC, Mavrodaris A, et al. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep. 2019;9(1):4743.PubMedPubMedCentral
91.
go back to reference McCall S, Vilensky JA, Gilman S, Taubenberger JK. The relationship between encephalitis lethargica and influenza: a critical analysis. J Neurovirol. 2008;14(3):177–85.PubMedPubMedCentral McCall S, Vilensky JA, Gilman S, Taubenberger JK. The relationship between encephalitis lethargica and influenza: a critical analysis. J Neurovirol. 2008;14(3):177–85.PubMedPubMedCentral
92.
go back to reference Damiano RF, Guedes BF, de Rocca CC, de Pádua SA, Castro LHM, Munhoz CD, et al. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci. 2022;272(1):139–54.PubMed Damiano RF, Guedes BF, de Rocca CC, de Pádua SA, Castro LHM, Munhoz CD, et al. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci. 2022;272(1):139–54.PubMed
93.
go back to reference Bourgonje AR, Abdulle AE, Timens W, Hillebrands J-L, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228–48.PubMedPubMedCentral Bourgonje AR, Abdulle AE, Timens W, Hillebrands J-L, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228–48.PubMedPubMedCentral
94.
go back to reference Sun N, Wei L, Shi S, Jiao D, Song R, Ma L, et al. A qualitative study on the psychological experience of caregivers of COVID-19 patients. Am J Infect Control. 2020;48(6):592–8.PubMedPubMedCentral Sun N, Wei L, Shi S, Jiao D, Song R, Ma L, et al. A qualitative study on the psychological experience of caregivers of COVID-19 patients. Am J Infect Control. 2020;48(6):592–8.PubMedPubMedCentral
95.
go back to reference Jamal M, Bangash HI, Habiba M, Lei Y, Xie T, Sun J, et al. Immune dysregulation and system pathology in COVID-19. Virulence. 2021;12(1):918–36.PubMedPubMedCentral Jamal M, Bangash HI, Habiba M, Lei Y, Xie T, Sun J, et al. Immune dysregulation and system pathology in COVID-19. Virulence. 2021;12(1):918–36.PubMedPubMedCentral
96.
go back to reference Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J Affect Disord. 2022;299:118–25.PubMed Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J Affect Disord. 2022;299:118–25.PubMed
97.
go back to reference Rius Ottenheim N, Pan K-Y, Kok AAL, Jörg F, Eikelenboom M, Horsfall M, et al. Predictors of mental health deterioration from pre- to post-COVID-19 outbreak. BJPsych open. 2022;8(5):e162.PubMed Rius Ottenheim N, Pan K-Y, Kok AAL, Jörg F, Eikelenboom M, Horsfall M, et al. Predictors of mental health deterioration from pre- to post-COVID-19 outbreak. BJPsych open. 2022;8(5):e162.PubMed
98.
go back to reference Taga A, Lauria G. COVID-19 and the peripheral nervous system. A 2-year review from the pandemic to the vaccine era. J Peripher Nerv Syst. 2022;27(1):4–30.PubMedPubMedCentral Taga A, Lauria G. COVID-19 and the peripheral nervous system. A 2-year review from the pandemic to the vaccine era. J Peripher Nerv Syst. 2022;27(1):4–30.PubMedPubMedCentral
99.
go back to reference Studart-Neto A, Guedes BF, de Tuma R, Camelo AE, Kubota GT, Iepsen BD, et al. Neurological consultations and diagnoses in a large, dedicated COVID-19 university hospital. Arq Neuropsiquiatr. 2020;78(8):494–500.PubMed Studart-Neto A, Guedes BF, de Tuma R, Camelo AE, Kubota GT, Iepsen BD, et al. Neurological consultations and diagnoses in a large, dedicated COVID-19 university hospital. Arq Neuropsiquiatr. 2020;78(8):494–500.PubMed
100.
go back to reference McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537.PubMedPubMedCentral McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537.PubMedPubMedCentral
101.
go back to reference Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflammat. 2020;7(4):e741. Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflammat. 2020;7(4):e741.
102.
go back to reference Nuzzo D, Cambula G, Bacile I, Rizzo M, Galia M, Mangiapane P, et al. Long-term brain disorders in post Covid-19 neurological syndrome (PCNS) patient. Brain Sci. 2021;11(4):454.PubMedPubMedCentral Nuzzo D, Cambula G, Bacile I, Rizzo M, Galia M, Mangiapane P, et al. Long-term brain disorders in post Covid-19 neurological syndrome (PCNS) patient. Brain Sci. 2021;11(4):454.PubMedPubMedCentral
104.
go back to reference Li Y, Bai W, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–5.PubMedPubMedCentral Li Y, Bai W, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–5.PubMedPubMedCentral
105.
go back to reference Thieme CJ, Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar A, Seibert FS, et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell reports Med. 2020;1(6):100092. Thieme CJ, Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar A, Seibert FS, et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell reports Med. 2020;1(6):100092.
106.
go back to reference Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459–72.PubMedPubMedCentral Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459–72.PubMedPubMedCentral
107.
go back to reference Kalaria RN, Mukaetova-Ladinska EB. Delirium, dementia and senility. Brain. 2012;135(Pt 9):2582–4.PubMed Kalaria RN, Mukaetova-Ladinska EB. Delirium, dementia and senility. Brain. 2012;135(Pt 9):2582–4.PubMed
108.
go back to reference Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. The Lancet Psychiatry. 2021;8(5):416–27.PubMedPubMedCentral Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. The Lancet Psychiatry. 2021;8(5):416–27.PubMedPubMedCentral
109.
go back to reference Tsivgoulis G, Palaiodimou L, Zand R, Lioutas VA, Krogias C, Katsanos AH, et al. COVID-19 and cerebrovascular diseases: a comprehensive overview. Ther Adv Neurol Disord. 2020;13:1756286420978004.PubMedPubMedCentral Tsivgoulis G, Palaiodimou L, Zand R, Lioutas VA, Krogias C, Katsanos AH, et al. COVID-19 and cerebrovascular diseases: a comprehensive overview. Ther Adv Neurol Disord. 2020;13:1756286420978004.PubMedPubMedCentral
110.
go back to reference Gacche RN, Gacche RA, Chen J, Li H, Li G. Predictors of morbidity and mortality in COVID-19. Eur Rev Med Pharmacol Sci. 2021;25(3):1684–707.PubMed Gacche RN, Gacche RA, Chen J, Li H, Li G. Predictors of morbidity and mortality in COVID-19. Eur Rev Med Pharmacol Sci. 2021;25(3):1684–707.PubMed
111.
go back to reference Tong X, Yang Q, Asaithambi G, Merritt RK. Venous thromboembolism among Medicare acute ischaemic stroke patients with and without COVID-19. Stroke Vasc Neurol. 2023;8(3):259–62.PubMed Tong X, Yang Q, Asaithambi G, Merritt RK. Venous thromboembolism among Medicare acute ischaemic stroke patients with and without COVID-19. Stroke Vasc Neurol. 2023;8(3):259–62.PubMed
112.
go back to reference Cardona Maya WD, Du Plessis SS, Velilla PA. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection. Reprod Biomed Online. 2020;40(6):763–4.PubMedPubMedCentral Cardona Maya WD, Du Plessis SS, Velilla PA. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection. Reprod Biomed Online. 2020;40(6):763–4.PubMedPubMedCentral
113.
go back to reference Seque CA, Enokihara MM, Porro AM, Tomimori J. Skin manifestations associated with COVID-19. An Bras Dermatol. 2022;97(1):75–88.PubMed Seque CA, Enokihara MM, Porro AM, Tomimori J. Skin manifestations associated with COVID-19. An Bras Dermatol. 2022;97(1):75–88.PubMed
114.
go back to reference Zakeri A, Jadhav AP, Sullenger BA, Nimjee SM. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J Neurointerv Surg. 2021;13(3):202–6.PubMed Zakeri A, Jadhav AP, Sullenger BA, Nimjee SM. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J Neurointerv Surg. 2021;13(3):202–6.PubMed
115.
go back to reference Wolfe CDA, Charles D, Wolfe DA. The impact of stroke. Br Med Bull. 2000;56(2):275–86.PubMed Wolfe CDA, Charles D, Wolfe DA. The impact of stroke. Br Med Bull. 2000;56(2):275–86.PubMed
116.
go back to reference Katsanos AH, Palaiodimou L, Zand R, Yaghi S, Kamel H, Navi BB, et al. The Impact of SARS-CoV-2 on stroke epidemiology and care: a meta-analysis. Ann Neurol. 2021;89(2):380–8.PubMed Katsanos AH, Palaiodimou L, Zand R, Yaghi S, Kamel H, Navi BB, et al. The Impact of SARS-CoV-2 on stroke epidemiology and care: a meta-analysis. Ann Neurol. 2021;89(2):380–8.PubMed
117.
go back to reference Beslow LA, Linds AB, Fox CK, Kossorotoff M, Zuñiga Zambrano YC, Hernández-Chávez M, et al. Pediatric ischemic stroke: an infrequent complication of SARS-CoV-2. Ann Neurol. 2021;89(4):657–65.PubMed Beslow LA, Linds AB, Fox CK, Kossorotoff M, Zuñiga Zambrano YC, Hernández-Chávez M, et al. Pediatric ischemic stroke: an infrequent complication of SARS-CoV-2. Ann Neurol. 2021;89(4):657–65.PubMed
118.
go back to reference Ahmadi Karvigh S, Vahabizad F, Banihashemi G, Sahraian MA, Gheini MR, Eslami M, et al. Ischemic stroke in patients with COVID-19 disease: a report of 10 cases from Iran. Cerebrovasc Dis. 2021;50(2):239–44.PubMed Ahmadi Karvigh S, Vahabizad F, Banihashemi G, Sahraian MA, Gheini MR, Eslami M, et al. Ischemic stroke in patients with COVID-19 disease: a report of 10 cases from Iran. Cerebrovasc Dis. 2021;50(2):239–44.PubMed
119.
go back to reference Chen Y, Nguyen TN, Siegler JE, Mofatteh M, Wellington J, Yang R, et al. The Impact of COVID-19 pandemic on ischemic stroke patients in a comprehensive hospital. Risk Manag Healthc Policy. 2022;15:1741–9.PubMedPubMedCentral Chen Y, Nguyen TN, Siegler JE, Mofatteh M, Wellington J, Yang R, et al. The Impact of COVID-19 pandemic on ischemic stroke patients in a comprehensive hospital. Risk Manag Healthc Policy. 2022;15:1741–9.PubMedPubMedCentral
120.
go back to reference Chen Y, Nguyen TN, Wellington J, Mofatteh M, Yao W, Hu Z, et al. Shortening door-to-needle time by multidisciplinary collaboration and workflow optimization during the COVID-19 pandemic. J stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2022;31(1):106179. Chen Y, Nguyen TN, Wellington J, Mofatteh M, Yao W, Hu Z, et al. Shortening door-to-needle time by multidisciplinary collaboration and workflow optimization during the COVID-19 pandemic. J stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2022;31(1):106179.
121.
go back to reference Ghosh R, Roy D, Mandal A, Pal SK, Chandra Swaika B, Naga D, et al. Cerebral venous thrombosis in COVID-19. Diabetes Metab Syndr Clin Res Rev. 2021;15(3):1039–45. Ghosh R, Roy D, Mandal A, Pal SK, Chandra Swaika B, Naga D, et al. Cerebral venous thrombosis in COVID-19. Diabetes Metab Syndr Clin Res Rev. 2021;15(3):1039–45.
122.
go back to reference Voicu S, Ketfi C, Stépanian A, Chousterman BG, Mohamedi N, Siguret V, et al. Pathophysiological processes underlying the high prevalence of deep vein thrombosis in critically Ill COVID-19 patients. Front Physiol. 2020;11:608788.PubMed Voicu S, Ketfi C, Stépanian A, Chousterman BG, Mohamedi N, Siguret V, et al. Pathophysiological processes underlying the high prevalence of deep vein thrombosis in critically Ill COVID-19 patients. Front Physiol. 2020;11:608788.PubMed
123.
go back to reference Wijdicks EFM, Klein CJ. Guillain-Barré Syndrome. Mayo Clin Proc. 2017;92(3):467–79.PubMed Wijdicks EFM, Klein CJ. Guillain-Barré Syndrome. Mayo Clin Proc. 2017;92(3):467–79.PubMed
124.
go back to reference Luijten LWG, Leonhard SE, van der Eijk AA, Doets AY, Appeltshauser L, Arends S, et al. Guillain-Barré syndrome after SARS-CoV-2 infection in an international prospective cohort study. Brain. 2021;144(11):3392–404.PubMedPubMedCentral Luijten LWG, Leonhard SE, van der Eijk AA, Doets AY, Appeltshauser L, Arends S, et al. Guillain-Barré syndrome after SARS-CoV-2 infection in an international prospective cohort study. Brain. 2021;144(11):3392–404.PubMedPubMedCentral
125.
go back to reference Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019;26(1):27–40.PubMed Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019;26(1):27–40.PubMed
126.
go back to reference Sarwar S, Rogers S, Mohamed AS, Ogula E, Ayantayo RA, Ahmed A, et al. Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review. Vol. 13, Cureus. 2021. p. e19036. Sarwar S, Rogers S, Mohamed AS, Ogula E, Ayantayo RA, Ahmed A, et al. Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review. Vol. 13, Cureus. 2021. p. e19036.
127.
go back to reference Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol. 2010;9(6):599–612.PubMed Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol. 2010;9(6):599–612.PubMed
128.
go back to reference Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord. 2020;45:102377.PubMedPubMedCentral Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord. 2020;45:102377.PubMedPubMedCentral
129.
130.
go back to reference Naz S, Hanif M, Haider MA, Ali MJ, Ahmed MU, Saleem S. Meningitis as an Initial Presentation of COVID-19: A Case Report. Vol. 8, Frontiers in public health. 2020. p. 474. Naz S, Hanif M, Haider MA, Ali MJ, Ahmed MU, Saleem S. Meningitis as an Initial Presentation of COVID-19: A Case Report. Vol. 8, Frontiers in public health. 2020. p. 474.
131.
go back to reference Johnson RT. Acute Encephalitis. Clin Infect Dis. 1996;23(2):219–24.PubMed Johnson RT. Acute Encephalitis. Clin Infect Dis. 1996;23(2):219–24.PubMed
132.
go back to reference Huang YH, Jiang D, Huang JT. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav Immun. 2020;87:149.PubMedPubMedCentral Huang YH, Jiang D, Huang JT. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav Immun. 2020;87:149.PubMedPubMedCentral
134.
go back to reference Maino A, Rosendaal FR, Algra A, Peyvandi F, Siegerink B. Hypercoagulability Is a Stronger Risk Factor for Ischaemic Stroke than for Myocardial Infarction: A Systematic Review. PLoS ONE. 2015;10(8):e0133523.PubMedPubMedCentral Maino A, Rosendaal FR, Algra A, Peyvandi F, Siegerink B. Hypercoagulability Is a Stronger Risk Factor for Ischaemic Stroke than for Myocardial Infarction: A Systematic Review. PLoS ONE. 2015;10(8):e0133523.PubMedPubMedCentral
135.
go back to reference Fan H, Tang X, Song Y, Liu P, Chen Y. Influence of COVID-19 on cerebrovascular disease and its possible mechanism. Neuropsychiatr Dis Treat. 2020;16:1359–67.PubMedPubMedCentral Fan H, Tang X, Song Y, Liu P, Chen Y. Influence of COVID-19 on cerebrovascular disease and its possible mechanism. Neuropsychiatr Dis Treat. 2020;16:1359–67.PubMedPubMedCentral
136.
go back to reference Lou M, Yuan D, Liao S, Tong L, Li J. Potential mechanisms of cerebrovascular diseases in COVID-19 patients. J Neurovirol. 2021;27(1):35–51.PubMedPubMedCentral Lou M, Yuan D, Liao S, Tong L, Li J. Potential mechanisms of cerebrovascular diseases in COVID-19 patients. J Neurovirol. 2021;27(1):35–51.PubMedPubMedCentral
137.
go back to reference Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol. 2020;13(11):1265–75.PubMed Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol. 2020;13(11):1265–75.PubMed
138.
go back to reference Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab. 2017;37(6):2025–34.PubMed Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab. 2017;37(6):2025–34.PubMed
139.
go back to reference Malisch JL, Bennett DJ, Davidson BA, Wenker EE, Suzich RN, Johnson EE. Stress-induced hyperglycemia in white-throated and white-crowned sparrows: a new technique for rapid glucose measurement in the field. Physiol Biochem Zool. 2018;91(4):943–9.PubMed Malisch JL, Bennett DJ, Davidson BA, Wenker EE, Suzich RN, Johnson EE. Stress-induced hyperglycemia in white-throated and white-crowned sparrows: a new technique for rapid glucose measurement in the field. Physiol Biochem Zool. 2018;91(4):943–9.PubMed
140.
go back to reference Moni MA, Lin P-I, Quinn JMW, Eapen V. COVID-19 patient transcriptomic and genomic profiling reveals comorbidity interactions with psychiatric disorders. Transl Psychiatry. 2021;11(1):160.PubMedPubMedCentral Moni MA, Lin P-I, Quinn JMW, Eapen V. COVID-19 patient transcriptomic and genomic profiling reveals comorbidity interactions with psychiatric disorders. Transl Psychiatry. 2021;11(1):160.PubMedPubMedCentral
141.
go back to reference Mine K, Nagafuchi S, Mori H, Takahashi H, Anzai K. SARS-CoV-2 infection and pancreatic β cell failure. Biology. 2021;11(1):22.PubMedPubMedCentral Mine K, Nagafuchi S, Mori H, Takahashi H, Anzai K. SARS-CoV-2 infection and pancreatic β cell failure. Biology. 2021;11(1):22.PubMedPubMedCentral
142.
go back to reference Thakur KT, Tamborska A, Wood GK, McNeill E, Roh D, Akpan IJ, et al. Clinical review of cerebral venous thrombosis in the context of COVID-19 vaccinations: Evaluation, management, and scientific questions. J Neurol Sci. 2021;427:117532.PubMedPubMedCentral Thakur KT, Tamborska A, Wood GK, McNeill E, Roh D, Akpan IJ, et al. Clinical review of cerebral venous thrombosis in the context of COVID-19 vaccinations: Evaluation, management, and scientific questions. J Neurol Sci. 2021;427:117532.PubMedPubMedCentral
143.
go back to reference Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: an overview of the reports. Neurol Sci. 2020;41(11):3149–56.PubMedPubMedCentral Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: an overview of the reports. Neurol Sci. 2020;41(11):3149–56.PubMedPubMedCentral
144.
go back to reference Chaudhry F, Jageka C, Levy PD, Cerghet M, Lisak RP. Review of the COVID-19 risk in multiple sclerosis. J Cell Immunol. 2021;3(2):68–77.PubMedPubMedCentral Chaudhry F, Jageka C, Levy PD, Cerghet M, Lisak RP. Review of the COVID-19 risk in multiple sclerosis. J Cell Immunol. 2021;3(2):68–77.PubMedPubMedCentral
145.
go back to reference Padda I, Khehra N, Jaferi U, Parmar MS. The neurological complexities and prognosis of COVID-19. SN Compr Clin Med. 2020;2(11):2025–36.PubMedPubMedCentral Padda I, Khehra N, Jaferi U, Parmar MS. The neurological complexities and prognosis of COVID-19. SN Compr Clin Med. 2020;2(11):2025–36.PubMedPubMedCentral
146.
go back to reference Puccioni-Sohler M, Poton AR, Franklin M, Silva SJ da, Brindeiro R, Tanuri A. Current evidence of neurological features, diagnosis, and neuropathogenesis associated with COVID-19. Vol. 55, Revista da Sociedade Brasileira de Medicina Tropical. Brazil; 2022. p. e0534. Puccioni-Sohler M, Poton AR, Franklin M, Silva SJ da, Brindeiro R, Tanuri A. Current evidence of neurological features, diagnosis, and neuropathogenesis associated with COVID-19. Vol. 55, Revista da Sociedade Brasileira de Medicina Tropical. Brazil; 2022. p. e0534.
147.
go back to reference Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2020;127:104370. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2020;127:104370.
148.
go back to reference Yuen KCJ, Sharf V, Smith E, Kim M, Yuen ASM, MacDonald PR. Sodium and water perturbations in patients who had an acute stroke: clinical relevance and management strategies for the neurologist. Stroke Vasc Neurol. 2022;7(3):258–66.PubMed Yuen KCJ, Sharf V, Smith E, Kim M, Yuen ASM, MacDonald PR. Sodium and water perturbations in patients who had an acute stroke: clinical relevance and management strategies for the neurologist. Stroke Vasc Neurol. 2022;7(3):258–66.PubMed
149.
go back to reference Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.PubMed Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.PubMed
150.
go back to reference Pourbagheri-Sigaroodi A, Bashash D, Fateh F, Abolghasemi H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin Chim Acta. 2020;510:475–82.PubMedPubMedCentral Pourbagheri-Sigaroodi A, Bashash D, Fateh F, Abolghasemi H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin Chim Acta. 2020;510:475–82.PubMedPubMedCentral
Metadata
Title
Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders
Authors
Kritika Tyagi
Prachi Rai
Anuj Gautam
Harjeet Kaur
Sumeet Kapoor
Ashish Suttee
Pradeep Kumar Jaiswal
Akanksha Sharma
Gurpal Singh
Ravi Pratap Barnwal
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01293-2

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue