Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | SARS-CoV-2 | Research

Estimating the viral loads of SARS-CoV-2 in the oral cavity when complicated with periapical lesions

Authors: Alaa Muayad Altaie, Rania Hamdy, Thenmozhi Venkatachalam, Rifat Hamoudi, Sameh S. M. Soliman

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

The oral cavity represents a main entrance of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and transmembrane serine protease 2 (TMPRSS2) are essential for the entry of SARS-CoV-2 to the host cells. Both ACE-2 and NRP-1 receptors and TMPRSS2 have been identified in the oral cavity. However, there is limited knowledge about the impact of periapical lesions and their metabolites on the expression of these critical genes. This study aims to measure the impact of periapical lesions and their unique fatty acids (FAs) metabolites on the expression of the aforementioned genes, in addition to interleukin 6 (IL-6) gene and hence SARS-CoV-2 infection loads can be estimated.

Methods

Gene expression of ACE-2, NRP-1, TMPRSS2, and IL-6 was performed in periapical lesions in comparison to healthy oral cavity. Since FAs are important immunomodulators required for the lipid synthesis essential for receptors synthesis and viral replication, comparative FAs profiling was determined in oral lesions and healthy pulp tissues using gas chromatography–mass spectrometry (GC–MS). The effect of major identified and unique FAs was tested on mammalian cells known to express ACE-2, NRP-1, and TMPRSS2 genes.

Results

Gene expression analysis indicated that ACE-2, NRP-1, and TMPRSS2 were significantly upregulated in healthy clinical samples compared to oral lesions, while the reverse was true with IL-6 gene expression. Saturated and monounsaturated FAs were the major identified shared and unique FAs, respectively. Major shared FAs included palmitic, stearic and myristic acids with the highest percentage in the healthy oral cavity, while unique FAs included 17-octadecynoic acid in periapical abscess, petroselinic acid and l-lactic acid in periapical granuloma, and 1-nonadecene in the radicular cyst. Computational prediction showed that the binding affinity of identified FAs to ACE-2, TMPRSS2 and S protein were insignificant. Further, FA-treated mammalian cells showed significant overexpression of ACE-2, NRP-1 and TMPRSS2 genes except with l-lactic acid and oleic acid caused downregulation of NRP-1 gene, while 17-octadecynoic acid caused insignificant effect.

Conclusion

Collectively, a healthy oral cavity is more susceptible to viral infection when compared to that complicated with periapical lesions. FAs play important role in viral infection and their balance can affect the viral loads. Shifting the balance towards higher levels of palmitic, stearic and 1-nonadecene caused significant upregulation of the aforementioned genes and hence higher viral loads. On the other hand, there is a reverse correlation between inflammation and expression of SARS-CoV-2 receptors. Therefore, a mouth preparation that can reduce the levels of palmitic, stearic and 1-nonadecene, while maintaining an immunomodulatory effect can be employed as a future protection strategy against viral infection.
Literature
1.
go back to reference World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 1. Geneva: World Health Organization; 2020. World Health Organization. Novel Coronavirus (2019-nCoV): situation report, 1. Geneva: World Health Organization; 2020.
2.
go back to reference Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, Liu C, Wu K, Liu M, Chen J, et al. ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal–oral routes. 2020;7(869):1–10. Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, Liu C, Wu K, Liu M, Chen J, et al. ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal–oral routes. 2020;7(869):1–10.
3.
go back to reference Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, Geisthoff UW, Bauer C, Hautefort C, Herman P, Manley GT, Lyon DM, Hopkins C. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;20(9):1015–6.PubMedPubMedCentralCrossRef Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, Geisthoff UW, Bauer C, Hautefort C, Herman P, Manley GT, Lyon DM, Hopkins C. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;20(9):1015–6.PubMedPubMedCentralCrossRef
4.
go back to reference Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. PubMedPubMedCentralCrossRef Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. PubMedPubMedCentralCrossRef
5.
go back to reference Galicia JC, Guzzi PH, Giorgi FM, Khan AA. Predicting the response of the dental pulp to SARS-CoV2 infection: a transcriptome-wide effect cross-analysis. Genes Immun. 2020;21(5):360–3.PubMedCrossRef Galicia JC, Guzzi PH, Giorgi FM, Khan AA. Predicting the response of the dental pulp to SARS-CoV2 infection: a transcriptome-wide effect cross-analysis. Genes Immun. 2020;21(5):360–3.PubMedCrossRef
6.
go back to reference Wang H-B, Zhang H, Zhang J-P, Li Y, Zhao B, Feng G-K, Du Y, Xiong D, Zhong Q, Liu W-L. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun. 2015;6(1):1–13. Wang H-B, Zhang H, Zhang J-P, Li Y, Zhao B, Feng G-K, Du Y, Xiong D, Zhong Q, Liu W-L. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun. 2015;6(1):1–13.
7.
go back to reference Lambert S, Bouttier M, Vassy R, Seigneuret M, Petrow-Sadowski C, Janvier S, Heveker N, Ruscetti FW, Perret G, Jones KS. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood J Am Soc Hematol. 2009;113(21):5176–85. Lambert S, Bouttier M, Vassy R, Seigneuret M, Petrow-Sadowski C, Janvier S, Heveker N, Ruscetti FW, Perret G, Jones KS. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood J Am Soc Hematol. 2009;113(21):5176–85.
8.
go back to reference Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science (New York, NY). 2020;370(6518):856–60.CrossRef Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science (New York, NY). 2020;370(6518):856–60.CrossRef
9.
go back to reference Shahrabi-Farahani S, Gallottini M, Martins F, Li E, Mudge DR, Nakayama H, Hida K, Panigrahy D, D’Amore PA, Bielenberg DR. Neuropilin 1 receptor is up-regulated in dysplastic epithelium and oral squamous cell carcinoma. Am J Pathol. 2016;186(4):1055–64.PubMedPubMedCentralCrossRef Shahrabi-Farahani S, Gallottini M, Martins F, Li E, Mudge DR, Nakayama H, Hida K, Panigrahy D, D’Amore PA, Bielenberg DR. Neuropilin 1 receptor is up-regulated in dysplastic epithelium and oral squamous cell carcinoma. Am J Pathol. 2016;186(4):1055–64.PubMedPubMedCentralCrossRef
10.
go back to reference Olaso E, Lin HC, Wang LH, Friedman SL. Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenesis Tissue Repair. 2011;4(1):5.PubMedPubMedCentralCrossRef Olaso E, Lin HC, Wang LH, Friedman SL. Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenesis Tissue Repair. 2011;4(1):5.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang Y, Su J, Teng Y, Zhang J, Wang J, Li K, Yao L, Li X. Nrp1, a neuronal regulator, enhances DDR2-ERK-Runx2 cascade in osteoblast differentiation via suppression of DDR2 degradation. Cell Physiol Biochem. 2015;36(1):75–84.PubMedCrossRef Zhang Y, Su J, Teng Y, Zhang J, Wang J, Li K, Yao L, Li X. Nrp1, a neuronal regulator, enhances DDR2-ERK-Runx2 cascade in osteoblast differentiation via suppression of DDR2 degradation. Cell Physiol Biochem. 2015;36(1):75–84.PubMedCrossRef
13.
go back to reference Sijaona A, Luukko K, Kvinnsland IH, Kettunen P. Expression patterns of Sema3F, PlexinA4,-A3, Neuropilin1 and-2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Acta Odontol Scand. 2012;70(2):140–8.PubMedCrossRef Sijaona A, Luukko K, Kvinnsland IH, Kettunen P. Expression patterns of Sema3F, PlexinA4,-A3, Neuropilin1 and-2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Acta Odontol Scand. 2012;70(2):140–8.PubMedCrossRef
14.
go back to reference Song Y, Liu X, Feng X, Gu Z, Gu Y, Lian M, Xiao J, Cao P, Zheng K, Gu X. NRP1 accelerates odontoblast differentiation of dental pulp stem cells through classical Wnt/β-Catenin signaling. Cell Reprogram. 2017;19(5):324–30.PubMedCrossRef Song Y, Liu X, Feng X, Gu Z, Gu Y, Lian M, Xiao J, Cao P, Zheng K, Gu X. NRP1 accelerates odontoblast differentiation of dental pulp stem cells through classical Wnt/β-Catenin signaling. Cell Reprogram. 2017;19(5):324–30.PubMedCrossRef
15.
go back to reference Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786. PubMedPubMedCentralCrossRef Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786. PubMedPubMedCentralCrossRef
16.
go back to reference Sakaguchi W, Kubota N, Shimizu T, Saruta J, Fuchida S, Kawata A, Yamamoto Y, Sugimoto M, Yakeishi M, Tsukinoki K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int J Mol Sci. 2020;21(17):6000.PubMedCentralCrossRef Sakaguchi W, Kubota N, Shimizu T, Saruta J, Fuchida S, Kawata A, Yamamoto Y, Sugimoto M, Yakeishi M, Tsukinoki K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int J Mol Sci. 2020;21(17):6000.PubMedCentralCrossRef
17.
go back to reference Guinea R, Carrasco L. Effects of fatty acids on lipid synthesis and viral RNA replication in poliovirus-infected cells. Virology. 1991;185(1):473–6.PubMedCrossRef Guinea R, Carrasco L. Effects of fatty acids on lipid synthesis and viral RNA replication in poliovirus-infected cells. Virology. 1991;185(1):473–6.PubMedCrossRef
18.
go back to reference Alketbi EH, Hamdy R, El-Kabalawy A, Juric V, Pignitter M, A. Mosa K, Almehdi AM, El-Keblawy AA, Soliman SSM. Lipid-based therapies against SARS-CoV-2 infection. Rev Med Virol. 2021;31:e2214 Alketbi EH, Hamdy R, El-Kabalawy A, Juric V, Pignitter M, A. Mosa K, Almehdi AM, El-Keblawy AA, Soliman SSM. Lipid-based therapies against SARS-CoV-2 infection. Rev Med Virol. 2021;31:e2214
19.
go back to reference Xu Y, Baylink DJ, Chen C-S, Reeves ME, Xiao J, Lacy C, Lau E, Cao H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J Transl Med. 2020;18(1):322.PubMedPubMedCentralCrossRef Xu Y, Baylink DJ, Chen C-S, Reeves ME, Xiao J, Lacy C, Lau E, Cao H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J Transl Med. 2020;18(1):322.PubMedPubMedCentralCrossRef
20.
go back to reference Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, Marlet J, Stefic K, Benz-de Bretagne I, Cannet P, et al. The specific metabolome profiling of patients infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide pathway and cytosine metabolism. Sci Rep. 2020;10(1):16824.PubMedPubMedCentralCrossRef Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, Marlet J, Stefic K, Benz-de Bretagne I, Cannet P, et al. The specific metabolome profiling of patients infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide pathway and cytosine metabolism. Sci Rep. 2020;10(1):16824.PubMedPubMedCentralCrossRef
21.
go back to reference Torabinejad M, Walton R. Periradicular lesions. In: Bakland LK, editor. Endodontics. 4th ed. Baltimore: Williams & Wilkins; 1994. p. 439–64. Torabinejad M, Walton R. Periradicular lesions. In: Bakland LK, editor. Endodontics. 4th ed. Baltimore: Williams & Wilkins; 1994. p. 439–64.
22.
go back to reference George N, Flamiatos E, Kawasaki K, Kim N, Carriere C, Phan B, Joseph R, Strauss S, Kohli R, Choi D, et al. Oral microbiota species in acute apical endodontic abscesses. J Oral Microbiol. 2016;8:30989.PubMedCrossRef George N, Flamiatos E, Kawasaki K, Kim N, Carriere C, Phan B, Joseph R, Strauss S, Kohli R, Choi D, et al. Oral microbiota species in acute apical endodontic abscesses. J Oral Microbiol. 2016;8:30989.PubMedCrossRef
23.
go back to reference Nekoofar MH, Namazikhah MS, Sheykhrezae MS, Mohammadi MM, Kazemi A, Aseeley Z, Dummer PM. pH of pus collected from periapical abscesses. Int Endod J. 2009;42(6):534–8.PubMedCrossRef Nekoofar MH, Namazikhah MS, Sheykhrezae MS, Mohammadi MM, Kazemi A, Aseeley Z, Dummer PM. pH of pus collected from periapical abscesses. Int Endod J. 2009;42(6):534–8.PubMedCrossRef
24.
go back to reference Lanza RKI. Dental pulp stem cells. In: Lanza R, Klimanskaya I, editors. Essential stem cell methods. 1st ed. Amsterdam: Elesevier; 2009. p. 78. Lanza RKI. Dental pulp stem cells. In: Lanza R, Klimanskaya I, editors. Essential stem cell methods. 1st ed. Amsterdam: Elesevier; 2009. p. 78.
25.
go back to reference Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative metabolomics reveals the microenvironment of common T-helper cells and differential immune cells linked to unique periapical lesions. Front Immunol. 2021;12(3500):1-24. Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative metabolomics reveals the microenvironment of common T-helper cells and differential immune cells linked to unique periapical lesions. Front Immunol. 2021;12(3500):1-24.
26.
go back to reference Mussano F, Ferrocino I, Gavrilova N, Genova T, Dell’Acqua A, Cocolin L, Carossa S. Apical periodontitis: preliminary assessment of microbiota by 16S rRNA high throughput amplicon target sequencing. BMC Oral Health. 2018;18(1):55.PubMedPubMedCentralCrossRef Mussano F, Ferrocino I, Gavrilova N, Genova T, Dell’Acqua A, Cocolin L, Carossa S. Apical periodontitis: preliminary assessment of microbiota by 16S rRNA high throughput amplicon target sequencing. BMC Oral Health. 2018;18(1):55.PubMedPubMedCentralCrossRef
27.
go back to reference Soliman SSM, Alhamidi TB, Abdin S, Almehdi AM, Semreen MH, Alhumaidi RB, Shakartalla SB, Haider M, Husseiny MI, Omar HA. Effective targeting of breast cancer cells (MCF7) via novel biogenic synthesis of gold nanoparticles using cancer-derived metabolites. PLoS ONE. 2020;15(10):e0240156.PubMedPubMedCentralCrossRef Soliman SSM, Alhamidi TB, Abdin S, Almehdi AM, Semreen MH, Alhumaidi RB, Shakartalla SB, Haider M, Husseiny MI, Omar HA. Effective targeting of breast cancer cells (MCF7) via novel biogenic synthesis of gold nanoparticles using cancer-derived metabolites. PLoS ONE. 2020;15(10):e0240156.PubMedPubMedCentralCrossRef
28.
go back to reference Semreen MH, Soliman SSM, Saeed BQ, Alqarihi A, Uppuluri P, Ibrahim AS. Metabolic profiling of Candida auris, a newly-emerging multi-drug resistant Candida species, by GC–MS. Molecules. 2019;24(3):399.PubMedCentralCrossRef Semreen MH, Soliman SSM, Saeed BQ, Alqarihi A, Uppuluri P, Ibrahim AS. Metabolic profiling of Candida auris, a newly-emerging multi-drug resistant Candida species, by GC–MS. Molecules. 2019;24(3):399.PubMedCentralCrossRef
29.
go back to reference Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, Raineri D, Cittone MG, Rizzi E, Pedrinelli AR, et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int J Mol Sci. 2020;21(22):8623.PubMedCentralCrossRef Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, Raineri D, Cittone MG, Rizzi E, Pedrinelli AR, et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int J Mol Sci. 2020;21(22):8623.PubMedCentralCrossRef
30.
go back to reference El-Kurdi B, Khatua B, Rood C, Snozek C, Cartin-Ceba R, Singh VP, El-Kurdi B, Khatua B, Rood C, Snozek C, et al. Mortality from coronavirus disease 2019 increases with unsaturated fat and may be reduced by early calcium and albumin supplementation. Gastroenterology. 2020;159(3):1015-1018.e1014.PubMedCrossRef El-Kurdi B, Khatua B, Rood C, Snozek C, Cartin-Ceba R, Singh VP, El-Kurdi B, Khatua B, Rood C, Snozek C, et al. Mortality from coronavirus disease 2019 increases with unsaturated fat and may be reduced by early calcium and albumin supplementation. Gastroenterology. 2020;159(3):1015-1018.e1014.PubMedCrossRef
31.
go back to reference Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31(1):27–31.PubMedPubMedCentralCrossRef Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31(1):27–31.PubMedPubMedCentralCrossRef
32.
go back to reference Zhou BR, Zhang JA, Zhang Q, Permatasari F, Xu Y, Wu D, Yin ZQ, Luo D. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm. 2013;2013:530429.PubMedPubMedCentralCrossRef Zhou BR, Zhang JA, Zhang Q, Permatasari F, Xu Y, Wu D, Yin ZQ, Luo D. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm. 2013;2013:530429.PubMedPubMedCentralCrossRef
33.
go back to reference Miao H, Chen L, Hao L, Zhang X, Chen Y, Ruan Z, Liang H. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep. 2015;5(1):13092.PubMedPubMedCentralCrossRef Miao H, Chen L, Hao L, Zhang X, Chen Y, Ruan Z, Liang H. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep. 2015;5(1):13092.PubMedPubMedCentralCrossRef
34.
go back to reference Bersch-Ferreira ÂC, Sampaio GR, Gehringer MO, Torres EAFDS, Ross-Fernandes MB, da Silva JT, Torreglosa CR, Kovacs C, Alves R, Magnoni CD, et al. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study. Nutr J. 2018;17(1):26.PubMedPubMedCentralCrossRef Bersch-Ferreira ÂC, Sampaio GR, Gehringer MO, Torres EAFDS, Ross-Fernandes MB, da Silva JT, Torreglosa CR, Kovacs C, Alves R, Magnoni CD, et al. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study. Nutr J. 2018;17(1):26.PubMedPubMedCentralCrossRef
35.
go back to reference Troisi J, Cavallo P, Masarone M, Sepe I, Scala G, Campiglia P, De Caro F, Boccia G, Ciacci C, Poto S. Serum metabolomic profile of symptomatic and asymptomatic SARS-CoV-2 infected patients. Res Square. 2020. Troisi J, Cavallo P, Masarone M, Sepe I, Scala G, Campiglia P, De Caro F, Boccia G, Ciacci C, Poto S. Serum metabolomic profile of symptomatic and asymptomatic SARS-CoV-2 infected patients. Res Square. 2020.
36.
go back to reference Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Yan H, Ma S, Rattray NJW, Casanovas-Massana A, Israelow B, Klein J, et al. Kynurenic acid may underlie sex-specific immune responses to COVID-19. Sci Signal. 2021;14(690):eabf8483.PubMedPubMedCentralCrossRef Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Yan H, Ma S, Rattray NJW, Casanovas-Massana A, Israelow B, Klein J, et al. Kynurenic acid may underlie sex-specific immune responses to COVID-19. Sci Signal. 2021;14(690):eabf8483.PubMedPubMedCentralCrossRef
37.
go back to reference Hilmarsson H, Traustason BS, Kristmundsdóttir T, Thormar H. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Adv Virol. 2007;152(12):2225–36. Hilmarsson H, Traustason BS, Kristmundsdóttir T, Thormar H. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Adv Virol. 2007;152(12):2225–36.
38.
go back to reference Muralidharan J, Papandreou C, Sala-Vila A, Rosique-Esteban N, Fitó M, Estruch R, Angel Martínez-González M, Corella D, Ros E, Razquín C, et al. Fatty acids composition of blood cell membranes and peripheral inflammation in the PREDIMED study: a cross-sectional analysis. Nutrients. 2019;11(3):576.PubMedCentralCrossRef Muralidharan J, Papandreou C, Sala-Vila A, Rosique-Esteban N, Fitó M, Estruch R, Angel Martínez-González M, Corella D, Ros E, Razquín C, et al. Fatty acids composition of blood cell membranes and peripheral inflammation in the PREDIMED study: a cross-sectional analysis. Nutrients. 2019;11(3):576.PubMedCentralCrossRef
39.
go back to reference Darnell ME, Taylor DR. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion. 2006;46(10):1770–7.PubMedPubMedCentralCrossRef Darnell ME, Taylor DR. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion. 2006;46(10):1770–7.PubMedPubMedCentralCrossRef
40.
go back to reference Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, Suzuki H, Saito H, Ishii H. Fatty acids enhance GRO/CINC-1 and Interleukin-6 production in rat intestinal epithelial cells. J Nutr. 2001;131(11):2943–50.PubMedCrossRef Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, Suzuki H, Saito H, Ishii H. Fatty acids enhance GRO/CINC-1 and Interleukin-6 production in rat intestinal epithelial cells. J Nutr. 2001;131(11):2943–50.PubMedCrossRef
41.
go back to reference Lu Y, Sun K, Guo S, Wang J, Li A, Rong X, Wang T, Shang Y, Chang W, Wang S. Early Warning Indicators of Severe COVID-19: A Single-Center Study of Cases From Shanghai, China. Front Med. 2020;7:432.CrossRef Lu Y, Sun K, Guo S, Wang J, Li A, Rong X, Wang T, Shang Y, Chang W, Wang S. Early Warning Indicators of Severe COVID-19: A Single-Center Study of Cases From Shanghai, China. Front Med. 2020;7:432.CrossRef
42.
go back to reference Sung A, Wischmeyer P. A randomized trial of the effect of lactobacillus on the microbiome of household contacts exposed to COVID-19. Duke University; 2021. Sung A, Wischmeyer P. A randomized trial of the effect of lactobacillus on the microbiome of household contacts exposed to COVID-19. Duke University; 2021.
44.
go back to reference Xu G, Jiang J, Wang M, Li L, Su J, Ren X. Lactic acid reduces LPS-induced TNF-α and IL-6 mRNA levels through decreasing IKBα phosphorylation. J Integr Agric. 2013;12(6):1073–8.CrossRef Xu G, Jiang J, Wang M, Li L, Su J, Ren X. Lactic acid reduces LPS-induced TNF-α and IL-6 mRNA levels through decreasing IKBα phosphorylation. J Integr Agric. 2013;12(6):1073–8.CrossRef
45.
go back to reference Caslin H, Abebayehu D, Qayum AA, Hoeferlin LA, Chalfant CE, Ryan JJ. Lactic acid suppresses LPS-induced cytokine production in vitro and in vivo. J Immunol. 2017;198(Suppl 1):222.216-222.216. Caslin H, Abebayehu D, Qayum AA, Hoeferlin LA, Chalfant CE, Ryan JJ. Lactic acid suppresses LPS-induced cytokine production in vitro and in vivo. J Immunol. 2017;198(Suppl 1):222.216-222.216.
46.
go back to reference Yan B, Chu H, Yang D, Sze KH, Lai PM, Yuan S, Shuai H, Wang Y, Kao RY, Chan JF, et al. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 2019;11(1):73.PubMedCentralCrossRef Yan B, Chu H, Yang D, Sze KH, Lai PM, Yuan S, Shuai H, Wang Y, Kao RY, Chan JF, et al. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 2019;11(1):73.PubMedCentralCrossRef
48.
go back to reference Goodfriend TL, Ball DL. Fatty acid effects on angiotensin receptors. J Cardiovasc Pharmacol. 1986;8(6):1276–83.PubMedCrossRef Goodfriend TL, Ball DL. Fatty acid effects on angiotensin receptors. J Cardiovasc Pharmacol. 1986;8(6):1276–83.PubMedCrossRef
49.
go back to reference Marwah A, Marwah P. Coronavirus (COVID-19): A protocol for prevention, treatment and control. J Appl Nat Sci. 2020;12:119–23.CrossRef Marwah A, Marwah P. Coronavirus (COVID-19): A protocol for prevention, treatment and control. J Appl Nat Sci. 2020;12:119–23.CrossRef
50.
go back to reference Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr. 2004;79(6):969–73.PubMedCrossRef Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr. 2004;79(6):969–73.PubMedCrossRef
51.
go back to reference Liu S, Xie Z, Zhao Q, Pang H, Turk J, Calderon L, Su W, Zhao G, Xu H, Gong MC, et al. Smooth muscle-specific expression of calcium-independent phospholipase A2β (iPLA2β) participates in the initiation and early progression of vascular inflammation and neointima formation. J Biol Chem. 2012;287(29):24739–53.PubMedPubMedCentralCrossRef Liu S, Xie Z, Zhao Q, Pang H, Turk J, Calderon L, Su W, Zhao G, Xu H, Gong MC, et al. Smooth muscle-specific expression of calcium-independent phospholipase A2β (iPLA2β) participates in the initiation and early progression of vascular inflammation and neointima formation. J Biol Chem. 2012;287(29):24739–53.PubMedPubMedCentralCrossRef
52.
go back to reference Goc A, Niedzwiecki A, Rath M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci Rep. 2021;11(1):5207.PubMedPubMedCentralCrossRef Goc A, Niedzwiecki A, Rath M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci Rep. 2021;11(1):5207.PubMedPubMedCentralCrossRef
53.
go back to reference Malnoe ABM, Fay L. Use of petroselinic acid for the treatment of inflammations of superficial tissues. Societe des Produits Nestle SA; 1997. Malnoe ABM, Fay L. Use of petroselinic acid for the treatment of inflammations of superficial tissues. Societe des Produits Nestle SA; 1997.
54.
go back to reference Oh SH, Jang CS. Development and validation of a real-time PCR based assay to detect adulteration with corn in commercial turmeric powder products. Foods (Basel, Switzerland). 2020;9(7):882. Oh SH, Jang CS. Development and validation of a real-time PCR based assay to detect adulteration with corn in commercial turmeric powder products. Foods (Basel, Switzerland). 2020;9(7):882.
55.
go back to reference Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W, Kucia M. SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45(-) precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev Rep. 2021;17(1):266–77.PubMedCrossRef Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W, Kucia M. SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45(-) precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev Rep. 2021;17(1):266–77.PubMedCrossRef
56.
go back to reference Matkar PN, Singh KK, Rudenko D, Kim YJ, Kuliszewski MA, Prud’homme GJ, Hedley DW, Leong-Poi H. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7(43):69489–506.PubMedPubMedCentralCrossRef Matkar PN, Singh KK, Rudenko D, Kim YJ, Kuliszewski MA, Prud’homme GJ, Hedley DW, Leong-Poi H. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7(43):69489–506.PubMedPubMedCentralCrossRef
57.
go back to reference Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D, Motooka D, Minami S, Kobayashi T, Yamamoto T, Okamoto T et al. Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv : the preprint server for biology. 2020.2020.2005.2025.115600. Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D, Motooka D, Minami S, Kobayashi T, Yamamoto T, Okamoto T et al. Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv : the preprint server for biology. 2020.2020.2005.2025.115600.
58.
go back to reference Balint B, Yin H, Nong Z, Arpino JM, O’Neil C, Rogers SR, Randhawa VK, Fox SA, Chevalier J, Lee JJ, et al. Seno-destructive smooth muscle cells in the ascending aorta of patients with bicuspid aortic valve disease. EBioMedicine. 2019;43:54–66.PubMedPubMedCentralCrossRef Balint B, Yin H, Nong Z, Arpino JM, O’Neil C, Rogers SR, Randhawa VK, Fox SA, Chevalier J, Lee JJ, et al. Seno-destructive smooth muscle cells in the ascending aorta of patients with bicuspid aortic valve disease. EBioMedicine. 2019;43:54–66.PubMedPubMedCentralCrossRef
59.
go back to reference Nabokina SM, Inoue K, Subramanian VS, Valle JE, Yuasa H, Said HM. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. J Biol Chem. 2014;289(7):4405–16.PubMedCrossRef Nabokina SM, Inoue K, Subramanian VS, Valle JE, Yuasa H, Said HM. Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. J Biol Chem. 2014;289(7):4405–16.PubMedCrossRef
60.
go back to reference Halczy-Kowalik L, Drozd A, Stachowska E, Drozd R, Żabski T, Domagała W. Fatty acids distribution and content in oral squamous cell carcinoma tissue and its adjacent microenvironment. PLoS ONE. 2019;14(6):e0218246–e0218246.PubMedPubMedCentralCrossRef Halczy-Kowalik L, Drozd A, Stachowska E, Drozd R, Żabski T, Domagała W. Fatty acids distribution and content in oral squamous cell carcinoma tissue and its adjacent microenvironment. PLoS ONE. 2019;14(6):e0218246–e0218246.PubMedPubMedCentralCrossRef
61.
go back to reference Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of short chain fatty acids in controlling T(regs) and immunopathology during mucosal infection. Front Microbiol. 1995;2018:9. Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of short chain fatty acids in controlling T(regs) and immunopathology during mucosal infection. Front Microbiol. 1995;2018:9.
63.
go back to reference Cervino G, Fiorillo L, Surace G, Paduano V, Fiorillo MT, De Stefano R, Laudicella R, Baldari S, Gaeta M, Cicciù M. SARS-CoV-2 persistence: data summary up to Q2 2020. Data. 2020;5(3):81.CrossRef Cervino G, Fiorillo L, Surace G, Paduano V, Fiorillo MT, De Stefano R, Laudicella R, Baldari S, Gaeta M, Cicciù M. SARS-CoV-2 persistence: data summary up to Q2 2020. Data. 2020;5(3):81.CrossRef
64.
go back to reference Cervino G, Oteri G. COVID-19 pandemic and telephone triage before attending medical office: problem or opportunity? Medicina (Kaunas). 2020;56(5):250.CrossRef Cervino G, Oteri G. COVID-19 pandemic and telephone triage before attending medical office: problem or opportunity? Medicina (Kaunas). 2020;56(5):250.CrossRef
65.
go back to reference Chauhan A, Ghoshal S, Pal A. Increased susceptibility of SARS-CoV2 infection on oral cancer patients; cause and effects: an hypothesis. Med Hypotheses. 2020;144:109987–109987.PubMedPubMedCentralCrossRef Chauhan A, Ghoshal S, Pal A. Increased susceptibility of SARS-CoV2 infection on oral cancer patients; cause and effects: an hypothesis. Med Hypotheses. 2020;144:109987–109987.PubMedPubMedCentralCrossRef
66.
go back to reference Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci. 2020;10(1):148.PubMedPubMedCentralCrossRef Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci. 2020;10(1):148.PubMedPubMedCentralCrossRef
67.
go back to reference de Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474–81.PubMedCrossRef de Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474–81.PubMedCrossRef
68.
go back to reference Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020;50(12):1313–24.PubMedCrossRef Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020;50(12):1313–24.PubMedCrossRef
69.
go back to reference Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42.PubMedPubMedCentralCrossRef Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42.PubMedPubMedCentralCrossRef
70.
go back to reference Sam QH, Ling H, Yew WS, Tan Z, Ravikumar S, Chang MW, Chai LYA. The divergent immunomodulatory effects of short chain fatty acids and medium chain fatty acids. Int J Mol Sci. 2021;22(12):6453.PubMedPubMedCentralCrossRef Sam QH, Ling H, Yew WS, Tan Z, Ravikumar S, Chang MW, Chai LYA. The divergent immunomodulatory effects of short chain fatty acids and medium chain fatty acids. Int J Mol Sci. 2021;22(12):6453.PubMedPubMedCentralCrossRef
71.
go back to reference Sacconi A, Donzelli S, Pulito C, Ferrero S, Spinella F, Morrone A, Rigoni M, Pimpinelli F, Ensoli F, Sanguineti G, et al. TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients. J Exp Clin Cancer Res. 2020;39(1):200.PubMedPubMedCentralCrossRef Sacconi A, Donzelli S, Pulito C, Ferrero S, Spinella F, Morrone A, Rigoni M, Pimpinelli F, Ensoli F, Sanguineti G, et al. TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients. J Exp Clin Cancer Res. 2020;39(1):200.PubMedPubMedCentralCrossRef
73.
go back to reference Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Kavanagh Williamson M, Shoemark DK, Garzoni F, Staufer O, Milligan R, et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science (New York, NY). 2020;370(6517):725–30.CrossRef Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Kavanagh Williamson M, Shoemark DK, Garzoni F, Staufer O, Milligan R, et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science (New York, NY). 2020;370(6517):725–30.CrossRef
Metadata
Title
Estimating the viral loads of SARS-CoV-2 in the oral cavity when complicated with periapical lesions
Authors
Alaa Muayad Altaie
Rania Hamdy
Thenmozhi Venkatachalam
Rifat Hamoudi
Sameh S. M. Soliman
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01921-5

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue