Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research

Comparing the expression levels of tripartite motif containing 28 in mild and severe COVID-19 infection

Authors: Rezvan Tavakoli, Pooneh Rahimi, Mojtaba Hamidi-Fard, Sana Eybpoosh, Delaram Doroud, Iraj Ahmadi, Enayat Anvari, Mohammadreza Aghasadeghi, Abolfazl Fateh

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

Tripartite motif-containing 28 (TRIM28) is an impressive regulator of the epigenetic control of the antiviral immune response. This study evaluated if the differential expression of TRIM28 correlates with the severity of coronavirus disease 2019 (COVID-19) infection.

Methods

A total of 330 COVID-19 patients, including 188 mild and 142 severe infections, and 160 healthy controls were enrolled in this study. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the expression levels of TRIM28 in the studied patients.

Results

TRIM28 mRNA levels were significantly lower in both groups of patients versus the control group and in the severe group indicated further reduction in comparison to mild infection. The multivariate logistic regression analysis showed the mean age, lower levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, lower 25-hydroxyvitamin D, and PCR cycle threshold (Ct) value and higher levels of erythrocyte sedimentation rate (ESR) and differential expression of TRIM28 were linked to the severity of COVID-19 infection.

Conclusion

The results of this study proved that the downregulation of TRIM28 might be associated with the severity of COVID-19 infection. Further studies are required to determine the association between the COVID-19 infection severity and TRIM family proteins.
Literature
1.
go back to reference Tsabouri S, Makis A, Kosmeri C, Siomou E. Risk factors for severity in children with coronavirus disease 2019: a comprehensive literature review. Pediatr Clin. 2021;68:321–38. Tsabouri S, Makis A, Kosmeri C, Siomou E. Risk factors for severity in children with coronavirus disease 2019: a comprehensive literature review. Pediatr Clin. 2021;68:321–38.
2.
go back to reference Chow N, Fleming-Dutra K, Gierke R, Hall A, Hughes M, Pilishvili T. CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:382–6.CrossRefPubMedCentral Chow N, Fleming-Dutra K, Gierke R, Hall A, Hughes M, Pilishvili T. CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:382–6.CrossRefPubMedCentral
3.
go back to reference Chen F, Zhang Y, Sucgang R, Ramani S, Corry D, Kheradmand F, Creighton CJ. Meta-analysis of host transcriptional responses to SARS-CoV-2 infection reveals their manifestation in human tumors. Sci Rep. 2021;11:2459.CrossRefPubMedPubMedCentral Chen F, Zhang Y, Sucgang R, Ramani S, Corry D, Kheradmand F, Creighton CJ. Meta-analysis of host transcriptional responses to SARS-CoV-2 infection reveals their manifestation in human tumors. Sci Rep. 2021;11:2459.CrossRefPubMedPubMedCentral
4.
go back to reference Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413:732–8.CrossRefPubMed Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413:732–8.CrossRefPubMed
6.
7.
go back to reference Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26:842–4.CrossRefPubMed Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26:842–4.CrossRefPubMed
8.
go back to reference Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R, Sekine Y, Ohta K, Ishiyama H, Matsuda T. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008;370:366–70.CrossRefPubMed Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R, Sekine Y, Ohta K, Ishiyama H, Matsuda T. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008;370:366–70.CrossRefPubMed
9.
go back to reference Gehrmann U, Burbage M, Zueva E, Goudot C, Esnault C, Ye M, Carpier J-M, Burgdorf N, Hoyler T, Suarez G: Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proceedings of the National Academy of Sciences 2019, 116:25839–25849. Gehrmann U, Burbage M, Zueva E, Goudot C, Esnault C, Ye M, Carpier J-M, Burgdorf N, Hoyler T, Suarez G: Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proceedings of the National Academy of Sciences 2019, 116:25839–25849.
10.
go back to reference Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Frontiers in immunology 2018:2229. Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Frontiers in immunology 2018:2229.
11.
go back to reference Nisole S, Stoye JP, Saïb A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005;3:799–808.CrossRefPubMed Nisole S, Stoye JP, Saïb A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005;3:799–808.CrossRefPubMed
12.
go back to reference Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.CrossRefPubMed Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.CrossRefPubMed
13.
go back to reference Liang Q, Deng H, Li X, Wu X, Tang Q, Chang T-H, Peng H, Rauscher FJ, Ozato K, Zhu F. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol. 2011;187:4754–63.CrossRefPubMed Liang Q, Deng H, Li X, Wu X, Tang Q, Chang T-H, Peng H, Rauscher FJ, Ozato K, Zhu F. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol. 2011;187:4754–63.CrossRefPubMed
14.
go back to reference Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? The Lancet. 2020;395:1111.CrossRef Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? The Lancet. 2020;395:1111.CrossRef
15.
go back to reference Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.CrossRefPubMedPubMedCentral Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.CrossRefPubMedPubMedCentral
16.
go back to reference Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang X-P, Neilson EG, Rauscher FJ. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10:2067–78.CrossRefPubMed Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang X-P, Neilson EG, Rauscher FJ. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10:2067–78.CrossRefPubMed
17.
go back to reference Tovo P-A, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M. COVID-19 in children: expressions of type I/II/III interferons, TRIM28, SETDB1, and endogenous retroviruses in mild and severe cases. Int J Mol Sci. 2021;22:7481.CrossRefPubMedPubMedCentral Tovo P-A, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M. COVID-19 in children: expressions of type I/II/III interferons, TRIM28, SETDB1, and endogenous retroviruses in mild and severe cases. Int J Mol Sci. 2021;22:7481.CrossRefPubMedPubMedCentral
18.
go back to reference Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181:1036–45.e1039.CrossRefPubMedPubMedCentral Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181:1036–45.e1039.CrossRefPubMedPubMedCentral
19.
go back to reference Wang Y, Fan Y, Huang Y, Du T, Liu Z, Huang D, Wang Y, Wang N, Zhang P. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal. 2021;85:110064.CrossRefPubMedPubMedCentral Wang Y, Fan Y, Huang Y, Du T, Liu Z, Huang D, Wang Y, Wang N, Zhang P. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal. 2021;85:110064.CrossRefPubMedPubMedCentral
20.
go back to reference Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, et al. Immune cell profiling of COVID-19 patients in the recovery stageby single-cell sequencing. Cell Discovery. 2020;6:31.CrossRefPubMedPubMedCentral Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, et al. Immune cell profiling of COVID-19 patients in the recovery stageby single-cell sequencing. Cell Discovery. 2020;6:31.CrossRefPubMedPubMedCentral
21.
go back to reference Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe. 2011;9:484–95.CrossRefPubMed Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe. 2011;9:484–95.CrossRefPubMed
22.
go back to reference Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology. 2018;516:165–75.CrossRefPubMed Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology. 2018;516:165–75.CrossRefPubMed
23.
go back to reference Mahat RK, Rathore V, Singh N, Singh N, Singh SK, Shah RK, Garg C. Lipid profile as an indicator of COVID-19 severity: a systematic review and meta-analysis. Clin Nutr ESPEN. 2021;45:91–101.CrossRefPubMedPubMedCentral Mahat RK, Rathore V, Singh N, Singh N, Singh SK, Shah RK, Garg C. Lipid profile as an indicator of COVID-19 severity: a systematic review and meta-analysis. Clin Nutr ESPEN. 2021;45:91–101.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Heffner JE, Sahn SA, Brown LK. Multilevel likelihood ratios for identifying exudative pleural effusions. Chest. 2002;121:1916–20.CrossRefPubMed Heffner JE, Sahn SA, Brown LK. Multilevel likelihood ratios for identifying exudative pleural effusions. Chest. 2002;121:1916–20.CrossRefPubMed
26.
go back to reference Bae JH, Choe HJ, Holick MF, Lim S. Association of vitamin D status with COVID-19 and its severity. Reviews in Endocrine and Metabolic Disorders 2022:1–21. Bae JH, Choe HJ, Holick MF, Lim S. Association of vitamin D status with COVID-19 and its severity. Reviews in Endocrine and Metabolic Disorders 2022:1–21.
27.
go back to reference Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5.CrossRefPubMedPubMedCentral Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5.CrossRefPubMedPubMedCentral
28.
go back to reference Rahimi P, Tarharoudi R, Rahimpour A, Mosayebi Amroabadi J, Ahmadi I, Anvari E, Siadat SD, Aghasadeghi M, Fateh A. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol J. 2021;18:1–7.CrossRef Rahimi P, Tarharoudi R, Rahimpour A, Mosayebi Amroabadi J, Ahmadi I, Anvari E, Siadat SD, Aghasadeghi M, Fateh A. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol J. 2021;18:1–7.CrossRef
29.
go back to reference Al Bayat S, Mundodan J, Hasnain S, Sallam M, Khogali H, Ali D, Alateeg S, Osama M, Elberdiny A, Al-Romaihi H. Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? J Infect Public Health. 2021;14:1201–5.CrossRefPubMedPubMedCentral Al Bayat S, Mundodan J, Hasnain S, Sallam M, Khogali H, Ali D, Alateeg S, Osama M, Elberdiny A, Al-Romaihi H. Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? J Infect Public Health. 2021;14:1201–5.CrossRefPubMedPubMedCentral
Metadata
Title
Comparing the expression levels of tripartite motif containing 28 in mild and severe COVID-19 infection
Authors
Rezvan Tavakoli
Pooneh Rahimi
Mojtaba Hamidi-Fard
Sana Eybpoosh
Delaram Doroud
Iraj Ahmadi
Enayat Anvari
Mohammadreza Aghasadeghi
Abolfazl Fateh
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01885-0

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.