Skip to main content
Top
Published in: Trials 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Study protocol

Inhaled aviptadil for the possible treatment of COVID-19 in patients at high risk for ARDS: study protocol for a randomized, placebo-controlled, and multicenter trial

Authors: Maria Boesing, Kristin Abig, Michael Brändle, Martin Brutsche, Emanuel Burri, Björn C. Frye, Stéphanie Giezendanner, Jan C. Grutters, Philippe Haas, Justian Heisler, Fabienne Jaun, Anne B. Leuppi-Taegtmeyer, Giorgia Lüthi-Corridori, Joachim Müller-Quernheim, Reto Nüesch, Wolfgang Pohl, Frank Rassouli, Jörg D. Leuppi

Published in: Trials | Issue 1/2022

Login to get access

Abstract

Background

Despite the fast establishment of new therapeutic agents in the management of COVID-19 and large-scale vaccination campaigns since the beginning of the SARS-CoV-2 pandemic in early 2020, severe disease courses still represent a threat, especially to patients with risk factors. This indicates the need for alternative strategies to prevent respiratory complications like acute respiratory distress syndrome (ARDS) associated with COVID-19. Aviptadil, a synthetic form of human vasoactive intestinal peptide, might be beneficial for COVID-19 patients at high risk of developing ARDS because of its ability to influence the regulation of exaggerated pro-inflammatory proteins and orchestrate the lung homeostasis. Aviptadil has recently been shown to considerably improve the prognosis of ARDS in COVID-19 when applied intravenously. An inhaled application of aviptadil has the advantages of achieving a higher concentration in the lung tissue, fast onset of activity, avoiding the hepatic first-pass metabolism, and the reduction of adverse effects. The overall objective of this project is to assess the efficacy and safety of inhaled aviptadil in patients hospitalized for COVID-19 at high risk of developing ARDS.

Methods

This multicenter, placebo-controlled, double-blinded, randomized trial with 132 adult patients hospitalized for COVID-19 and at high risk for ARDS (adapted early acute lung injury score ≥ 2 points) is conducted in five public hospitals in Europe. Key exclusion criteria are mechanical ventilation at baseline, need for intensive care at baseline, and severe hemodynamic instability. Patients are randomly allocated to either inhale 67 μg aviptadil or normal saline (three times a day for 10 days), in addition to standard care, stratified by center. The primary endpoint is time from hospitalization to clinical improvement, defined as either hospital discharge, or improvement of at least two levels on the nine-level scale for clinical status suggested by the World Health Organization.

Discussion

Treatment strategies for COVID-19 are still limited. In the context of upcoming new variants of SARS-CoV-2 and possible inefficacy of the available vaccines and antibody therapies, the investigation of alternative therapy options plays a crucial role in decreasing associated mortality and improving prognosis. Due to its unique immunomodulating properties also targeting the SARS-CoV-2 pathways, inhaled aviptadil may have the potential to prevent ARDS in COVID-19.

Trial registration

ClinicalTrials.gov, NCT04536350. Registered 02 September 2020.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England). 2020;395(10223):507–13.CrossRef Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England). 2020;395(10223):507–13.CrossRef
2.
go back to reference Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.PubMedCrossRef Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.PubMedCrossRef
4.
go back to reference Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–18.PubMedPubMedCentralCrossRef Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–18.PubMedPubMedCentralCrossRef
9.
go back to reference Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–50.PubMedCrossRef Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–50.PubMedCrossRef
10.
go back to reference Dougan M, Azizad M, Chen P, Feldman B, Frieman M, Igbinadolor A, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. medRxiv [Preprint]; 2022. Available from: https://doi.org/10.1101/2022.03.10.22272100. Dougan M, Azizad M, Chen P, Feldman B, Frieman M, Igbinadolor A, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. medRxiv [Preprint]; 2022. Available from: https://​doi.​org/​10.​1101/​2022.​03.​10.​22272100.
11.
go back to reference Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N Engl J Med. 2022;386(4):305–15.PubMedCrossRef Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N Engl J Med. 2022;386(4):305–15.PubMedCrossRef
12.
go back to reference Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med. 2022;386(15):1397–408.PubMedCrossRef Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med. 2022;386(15):1397–408.PubMedCrossRef
13.
go back to reference Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–20.PubMedCrossRef Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–20.PubMedCrossRef
14.
go back to reference Reis G, Dos Santos Moreira-Silva EA, Silva DCM, Thabane L, Milagres AC, Ferreira TS, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob Health. 2022;10(1):e42–51.PubMedCrossRef Reis G, Dos Santos Moreira-Silva EA, Silva DCM, Thabane L, Milagres AC, Ferreira TS, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob Health. 2022;10(1):e42–51.PubMedCrossRef
15.
go back to reference Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021;385(23):e81.PubMedCrossRef Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021;385(23):e81.PubMedCrossRef
16.
go back to reference Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M, Tzanninis IG, et al. Emerging treatment strategies for COVID-19 infection. Clin Exp Med. 2021;21(2):167–79.PubMedCrossRef Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M, Tzanninis IG, et al. Emerging treatment strategies for COVID-19 infection. Clin Exp Med. 2021;21(2):167–79.PubMedCrossRef
17.
18.
go back to reference Rabie AM. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New J Chem. 2021;45(2):761–71.CrossRef Rabie AM. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New J Chem. 2021;45(2):761–71.CrossRef
19.
go back to reference Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428–55.PubMedCrossRef Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76(2):428–55.PubMedCrossRef
21.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497–506.CrossRef
23.
go back to reference Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127–35.PubMedCrossRef Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127–35.PubMedCrossRef
24.
go back to reference Said SI, Mutt V. Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature. 1970;225(5235):863–4.PubMedCrossRef Said SI, Mutt V. Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature. 1970;225(5235):863–4.PubMedCrossRef
25.
go back to reference Bodanszky M, Klausner YS, Lin CY, Mutt V, Said SI. Synthesis of the vasoactive intestinal peptide (VIP). J Am Chem Soc. 1974;96(15):4973–8.PubMedCrossRef Bodanszky M, Klausner YS, Lin CY, Mutt V, Said SI. Synthesis of the vasoactive intestinal peptide (VIP). J Am Chem Soc. 1974;96(15):4973–8.PubMedCrossRef
26.
go back to reference Bodansky M, Natarajan S, Gardner JD, Makhlouf GM, Said SI. Synthesis and some pharmacological properties of the 23-peptide 15-lysine-secretin-(5--27). Special role of the residue in position 15 in biological activity of the vasoactive intestinal polypeptide. J Med Chem. 1978;21(11):1171–3.PubMedCrossRef Bodansky M, Natarajan S, Gardner JD, Makhlouf GM, Said SI. Synthesis and some pharmacological properties of the 23-peptide 15-lysine-secretin-(5--27). Special role of the residue in position 15 in biological activity of the vasoactive intestinal polypeptide. J Med Chem. 1978;21(11):1171–3.PubMedCrossRef
27.
go back to reference Mathioudakis A, Chatzimavridou-Grigoriadou V, Evangelopoulou E, Mathioudakis G. Vasoactive intestinal peptide inhaled agonists: potential role in respiratory therapeutics. Hippokratia. 2013;17(1):12–6.PubMedPubMedCentral Mathioudakis A, Chatzimavridou-Grigoriadou V, Evangelopoulou E, Mathioudakis G. Vasoactive intestinal peptide inhaled agonists: potential role in respiratory therapeutics. Hippokratia. 2013;17(1):12–6.PubMedPubMedCentral
28.
go back to reference Virgolini I, Kurtaran A, Raderer M, Leimer M, Angelberger P, Havlik E, et al. Vasoactive intestinal peptide receptor scintigraphy. J Nucl Med. 1995;36(10):1732–9.PubMed Virgolini I, Kurtaran A, Raderer M, Leimer M, Angelberger P, Havlik E, et al. Vasoactive intestinal peptide receptor scintigraphy. J Nucl Med. 1995;36(10):1732–9.PubMed
29.
go back to reference Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998;273(47):31427–36.PubMedCrossRef Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem. 1998;273(47):31427–36.PubMedCrossRef
30.
go back to reference Sharma V, Delgado M, Ganea D. Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. J Immunol (Baltimore, Md: 1950). 2006;176(1):97–110.CrossRef Sharma V, Delgado M, Ganea D. Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. J Immunol (Baltimore, Md: 1950). 2006;176(1):97–110.CrossRef
31.
go back to reference Li L, Luo ZQ, Zhou FW, Feng DD, Guang CX, Zhang CQ, et al. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants. Acta Pharmacol Sin. 2004;25(12):1652–8.PubMed Li L, Luo ZQ, Zhou FW, Feng DD, Guang CX, Zhang CQ, et al. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants. Acta Pharmacol Sin. 2004;25(12):1652–8.PubMed
32.
go back to reference Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, da Silva Gomes Dias S, et al. The neuropeptides VIP and PACAP inhibit SARS-CoV-2 replication in monocytes and lung epithelial cells, decrease the production of proinflammatory cytokines, and VIP levels are associated with survival in severe Covid-19 patients. bioRxiv [Preprint]; 2020. https://doi.org/10.1101/2020.07.25.220806. Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, da Silva Gomes Dias S, et al. The neuropeptides VIP and PACAP inhibit SARS-CoV-2 replication in monocytes and lung epithelial cells, decrease the production of proinflammatory cytokines, and VIP levels are associated with survival in severe Covid-19 patients. bioRxiv [Preprint]; 2020. https://​doi.​org/​10.​1101/​2020.​07.​25.​220806.
34.
go back to reference Said SI. VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis. 1991;143(3 Pt 2):S22–4.PubMedCrossRef Said SI. VIP as a modulator of lung inflammation and airway constriction. Am Rev Respir Dis. 1991;143(3 Pt 2):S22–4.PubMedCrossRef
35.
go back to reference Berisha H, Foda H, Sakakibara H, Trotz M, Pakbaz H, Said SI. Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase. Am J Physiol. 1990;259(2 Pt 1):L151–5.PubMed Berisha H, Foda H, Sakakibara H, Trotz M, Pakbaz H, Said SI. Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase. Am J Physiol. 1990;259(2 Pt 1):L151–5.PubMed
36.
go back to reference Pakbaz H, Foda HD, Berisha HI, Trotz M, Said SI. Paraquat-induced lung injury: prevention by vasoactive intestinal peptide and related peptide helodermin. Am J Physiol. 1993;265(4 Pt 1):L369–73.PubMed Pakbaz H, Foda HD, Berisha HI, Trotz M, Said SI. Paraquat-induced lung injury: prevention by vasoactive intestinal peptide and related peptide helodermin. Am J Physiol. 1993;265(4 Pt 1):L369–73.PubMed
37.
go back to reference Said SI, Dickman KG. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept. 2000;93(1-3):21–9.PubMedCrossRef Said SI, Dickman KG. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept. 2000;93(1-3):21–9.PubMedCrossRef
38.
go back to reference Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, et al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol (Baltimore, Md: 1950). 1999;162(2):1200–5. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, et al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol (Baltimore, Md: 1950). 1999;162(2):1200–5.
39.
go back to reference Berisha HI, Bratut M, Bangale Y, Colasurdo G, Paul S, Said SI. New evidence for transmitter role of VIP in the airways: impaired relaxation by a catalytic antibody. Pulm Pharmacol Ther. 2002;15(2):121–7.PubMedCrossRef Berisha HI, Bratut M, Bangale Y, Colasurdo G, Paul S, Said SI. New evidence for transmitter role of VIP in the airways: impaired relaxation by a catalytic antibody. Pulm Pharmacol Ther. 2002;15(2):121–7.PubMedCrossRef
40.
go back to reference Li L, She H, Yue SJ, Qin XQ, Guan CX, Liu HJ, et al. Role of c-fos gene in vasoactive intestinal peptide promoted synthesis of pulmonary surfactant phospholipids. Regul Pept. 2007;140(3):117–24.PubMedCrossRef Li L, She H, Yue SJ, Qin XQ, Guan CX, Liu HJ, et al. Role of c-fos gene in vasoactive intestinal peptide promoted synthesis of pulmonary surfactant phospholipids. Regul Pept. 2007;140(3):117–24.PubMedCrossRef
41.
go back to reference Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Dias SSG, et al. VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells. J Leukoc Biol. 2022;111(5):1107-21. Temerozo JR, Sacramento CQ, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Dias SSG, et al. VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells. J Leukoc Biol. 2022;111(5):1107-21.
42.
go back to reference Youssef J, Lee R, Javitt J, Lavin P, Lenhardt R, Park D, et al. Intravenous aviptadil is associated with increased recovery and survival in patients with COVID-19 respiratory failure: results of a 60-day randomized controlled trial. SSRN [Preprint]; 2021. https://doi.org/10.2139/ssrn.3830051.CrossRef Youssef J, Lee R, Javitt J, Lavin P, Lenhardt R, Park D, et al. Intravenous aviptadil is associated with increased recovery and survival in patients with COVID-19 respiratory failure: results of a 60-day randomized controlled trial. SSRN [Preprint]; 2021. https://​doi.​org/​10.​2139/​ssrn.​3830051.CrossRef
43.
go back to reference Prasse A, Zissel G, Lützen N, Schupp J, Schmiedlin R, Gonzalez-Rey E, et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. 2010;182(4):540–8.PubMedCrossRef Prasse A, Zissel G, Lützen N, Schupp J, Schmiedlin R, Gonzalez-Rey E, et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. 2010;182(4):540–8.PubMedCrossRef
44.
go back to reference Ran WZ, Dong L, Tang CY, Zhou Y, Sun GY, Liu T, et al. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA- and PKC-dependent pathways. Int J Exp Pathol. 2015;96(4):269–75.PubMedPubMedCentralCrossRef Ran WZ, Dong L, Tang CY, Zhou Y, Sun GY, Liu T, et al. Vasoactive intestinal peptide suppresses macrophage-mediated inflammation by downregulating interleukin-17A expression via PKA- and PKC-dependent pathways. Int J Exp Pathol. 2015;96(4):269–75.PubMedPubMedCentralCrossRef
45.
go back to reference Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol. 2010;30(10):2537–51.PubMedPubMedCentralCrossRef Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol. 2010;30(10):2537–51.PubMedPubMedCentralCrossRef
46.
go back to reference Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–76.PubMedCrossRef Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–76.PubMedCrossRef
47.
go back to reference Frye BC, Meiss F, von Bubnoff D, Zissel G, Muller-Quernheim J. Vasoactive intestinal peptide in checkpoint inhibitor-induced pneumonitis. N Engl J Med. 2020;382(26):2573–4.PubMedCrossRef Frye BC, Meiss F, von Bubnoff D, Zissel G, Muller-Quernheim J. Vasoactive intestinal peptide in checkpoint inhibitor-induced pneumonitis. N Engl J Med. 2020;382(26):2573–4.PubMedCrossRef
48.
go back to reference Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–46.PubMedPubMedCentralCrossRef Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–46.PubMedPubMedCentralCrossRef
49.
go back to reference Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–94.PubMedCrossRef Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–94.PubMedCrossRef
50.
go back to reference Javitt J, Youssef G, Javitt M. Treatment of sepsis-related acute respiratory distress syndrome with vasoactive intestinal peptide. Am J Respir Crit Care Med. 2021;203:A2490. Javitt J, Youssef G, Javitt M. Treatment of sepsis-related acute respiratory distress syndrome with vasoactive intestinal peptide. Am J Respir Crit Care Med. 2021;203:A2490.
51.
go back to reference Mukherjee T, Behl T, Sharma S, Sehgal A, Singh S, Sharma N, et al. Anticipated pharmacological role of Aviptadil on COVID-19. Environ Sci Pollut Res Int. 2022;29(6):8109–25.PubMedCrossRef Mukherjee T, Behl T, Sharma S, Sehgal A, Singh S, Sharma N, et al. Anticipated pharmacological role of Aviptadil on COVID-19. Environ Sci Pollut Res Int. 2022;29(6):8109–25.PubMedCrossRef
52.
go back to reference Levitt JE, Calfee CS, Goldstein BA, Vojnik R, Matthay MA. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation. Crit Care Med. 2013;41(8):1929–37.PubMedPubMedCentralCrossRef Levitt JE, Calfee CS, Goldstein BA, Vojnik R, Matthay MA. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation. Crit Care Med. 2013;41(8):1929–37.PubMedPubMedCentralCrossRef
53.
go back to reference Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.PubMedCrossRef Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.PubMedCrossRef
54.
go back to reference Wu C, Chen X, Cai Y, Ja X, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–43.PubMedCrossRef Wu C, Chen X, Cai Y, Ja X, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–43.PubMedCrossRef
56.
go back to reference Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382(24):2327–36.PubMedCrossRef Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382(24):2327–36.PubMedCrossRef
57.
go back to reference Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England). 2020;395(10236):1569–78.CrossRef Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (London, England). 2020;395(10236):1569–78.CrossRef
58.
go back to reference Chow S, Shao J, Wang H. Sample size calculations in clinical research. 2nd ed. New York: Chapman & Hall; 2007.CrossRef Chow S, Shao J, Wang H. Sample size calculations in clinical research. 2nd ed. New York: Chapman & Hall; 2007.CrossRef
Metadata
Title
Inhaled aviptadil for the possible treatment of COVID-19 in patients at high risk for ARDS: study protocol for a randomized, placebo-controlled, and multicenter trial
Authors
Maria Boesing
Kristin Abig
Michael Brändle
Martin Brutsche
Emanuel Burri
Björn C. Frye
Stéphanie Giezendanner
Jan C. Grutters
Philippe Haas
Justian Heisler
Fabienne Jaun
Anne B. Leuppi-Taegtmeyer
Giorgia Lüthi-Corridori
Joachim Müller-Quernheim
Reto Nüesch
Wolfgang Pohl
Frank Rassouli
Jörg D. Leuppi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Trials / Issue 1/2022
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-022-06723-w

Other articles of this Issue 1/2022

Trials 1/2022 Go to the issue