Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Sarcoma | Research

Empty spiracles homeobox genes EMX1 and EMX2 regulate WNT pathway activation in sarcomagenesis

Authors: Manuel Pedro Jimenez-García, Antonio Lucena-Cacace, Daniel Otero-Albiol, Amancio Carnero

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Sarcomas are a very heterogeneous group of tumors with intrinsic developmental programs derived from the cell of origin. This implies a functional hierarchy inside tumors governed by sarcoma stem cells. Therefore, genetic and/or epigenetic changes profoundly affect the biology of sarcoma tumor stem cells. EMX genes are proposed to be transcription factors that are involved in the sarcomagenesis process, regardless of the neural or mesodermal embryological sarcoma origin. It has been shown that EMX1 or EMX2 overexpression reduces tumorigenic properties, while reducing the levels of these genes enhances these properties. Furthermore, it has been shown that EMX genes decrease the expression of stem cell regulatory genes and the stem cell phenotype. Taken together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-remodeling populations or sarcoma stem cells, acting as tumor suppressors in sarcoma.

Methods

Bioinformatic analysis, quantitative mRNA and protein expression analysis, cell models of sarcoma by ectopic expression of EMX genes. By cell biology methods we measured tumorigenesis and populations enriched on stem cell phenotypes, either in vitro or in vivo.

Results

In this work, we showed that the canonical Wnt pathway is one of the mechanisms that explains the relationships of EMX1/EMX2 and stem cell genes in sarcoma. The Wnt-EMX1/EMX2 relationship was validated in silico with sarcoma patient datasets, in vitro in primary derived sarcoma cell lines, and in vivo. EMX expression was found to negatively regulate the Wnt pathway. In addition, the constitutive activation of the Wnt pathway revers to a more aggressive phenotype with stem cell properties, and stemness gene transcription increased even in the presence of EMX1 and/or EMX2 overexpression, establishing the relationship among the Wnt pathway, stem cell genes and the EMX transcription factors.

Conclusions

Our data showed that Empty Spiracles Homeobox Genes EMX1 and EMX2 represses WNT signalling and activation of WNT pathway bypass EMX-dependent stemness repression and induces sarcomagenesis. These results also suggest the relevance of the Wnt/b-catenin/stemness axis as a therapeutic target in sarcoma.
Appendix
Available only for authorised users
Literature
3.
go back to reference Hatina J, Kripnerova M, Houfkova K, et al. Sarcoma stem cell heterogeneity. Adv Exp Med Biol. 2019;1123:95–118.PubMedCrossRef Hatina J, Kripnerova M, Houfkova K, et al. Sarcoma stem cell heterogeneity. Adv Exp Med Biol. 2019;1123:95–118.PubMedCrossRef
4.
go back to reference Jimenez-Garcia MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2. Cell Death Dis. 2021;12:515.PubMedPubMedCentralCrossRef Jimenez-Garcia MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2. Cell Death Dis. 2021;12:515.PubMedPubMedCentralCrossRef
5.
go back to reference Veselska R, Skoda J, Neradil J. Detection of cancer stem cell markers in sarcomas. Klin Onkol. 2012;25(Suppl 2):2S16-20.PubMed Veselska R, Skoda J, Neradil J. Detection of cancer stem cell markers in sarcomas. Klin Onkol. 2012;25(Suppl 2):2S16-20.PubMed
6.
go back to reference von Levetzow C, Jiang X, Gwye Y, et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 2011;6:e19305.CrossRef von Levetzow C, Jiang X, Gwye Y, et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 2011;6:e19305.CrossRef
7.
go back to reference Galli R, Fiocco R, De Filippis L, et al. Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development. 2002;129:1633–44.PubMedCrossRef Galli R, Fiocco R, De Filippis L, et al. Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development. 2002;129:1633–44.PubMedCrossRef
8.
go back to reference Gangemi RM, Daga A, Marubbi D, et al. Emx2 in adult neural precursor cells. Mech Dev. 2001;109:323–9.PubMedCrossRef Gangemi RM, Daga A, Marubbi D, et al. Emx2 in adult neural precursor cells. Mech Dev. 2001;109:323–9.PubMedCrossRef
9.
go back to reference Gangemi RM, Daga A, Muzio L, et al. Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci. 2006;23:325–34.PubMedCrossRef Gangemi RM, Daga A, Muzio L, et al. Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci. 2006;23:325–34.PubMedCrossRef
10.
go back to reference Mariani J, Favaro R, Lancini C, et al. Emx2 is a dose-dependent negative regulator of Sox2 telencephalic enhancers. Nucleic Acids Res. 2012;40:6461–76.PubMedPubMedCentralCrossRef Mariani J, Favaro R, Lancini C, et al. Emx2 is a dose-dependent negative regulator of Sox2 telencephalic enhancers. Nucleic Acids Res. 2012;40:6461–76.PubMedPubMedCentralCrossRef
11.
go back to reference Bordogna W, Hudson JD, Buddle J, et al. EMX homeobox genes regulate microphthalmia and alter melanocyte biology. Exp Cell Res. 2005;311:27–38.PubMedCrossRef Bordogna W, Hudson JD, Buddle J, et al. EMX homeobox genes regulate microphthalmia and alter melanocyte biology. Exp Cell Res. 2005;311:27–38.PubMedCrossRef
12.
14.
go back to reference Giroux Leprieur E, Hirata T, Mo M, et al. The homeobox gene EMX2 is a prognostic and predictive marker in malignant pleural mesothelioma. Lung Cancer. 2014;85:465–71.PubMedCrossRef Giroux Leprieur E, Hirata T, Mo M, et al. The homeobox gene EMX2 is a prognostic and predictive marker in malignant pleural mesothelioma. Lung Cancer. 2014;85:465–71.PubMedCrossRef
16.
17.
18.
go back to reference Okamoto J, Kratz JR, Hirata T, et al. Downregulation of EMX2 is associated with clinical outcomes in lung adenocarcinoma patients. Clin Lung Cancer. 2011;12:237–44.PubMedPubMedCentralCrossRef Okamoto J, Kratz JR, Hirata T, et al. Downregulation of EMX2 is associated with clinical outcomes in lung adenocarcinoma patients. Clin Lung Cancer. 2011;12:237–44.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Yamaguchi Y, Ogura S, Ishida M, Karasawa M, Takada S. Gene trap screening as an effective approach for identification of Wnt-responsive genes in the mouse embryo. Dev Dyn. 2005;233:484–95.PubMedCrossRef Yamaguchi Y, Ogura S, Ishida M, Karasawa M, Takada S. Gene trap screening as an effective approach for identification of Wnt-responsive genes in the mouse embryo. Dev Dyn. 2005;233:484–95.PubMedCrossRef
21.
go back to reference Katoh M, Katoh M. Comparative integromics on non-canonical WNT or planar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorectal cancer and that of SEMA6A in undifferentiated ES cells. Int J Mol Med. 2007;20:405–9.PubMed Katoh M, Katoh M. Comparative integromics on non-canonical WNT or planar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorectal cancer and that of SEMA6A in undifferentiated ES cells. Int J Mol Med. 2007;20:405–9.PubMed
22.
go back to reference de Sousa EMF, Vermeulen L. Wnt signaling in cancer stem cell biology. Cancers (Basel). 2016;8:60.CrossRef de Sousa EMF, Vermeulen L. Wnt signaling in cancer stem cell biology. Cancers (Basel). 2016;8:60.CrossRef
23.
go back to reference Kahn M. Wnt signaling in stem cells and cancer stem cells: a tale of two coactivators. Prog Mol Biol Transl Sci. 2018;153:209–44.PubMedCrossRef Kahn M. Wnt signaling in stem cells and cancer stem cells: a tale of two coactivators. Prog Mol Biol Transl Sci. 2018;153:209–44.PubMedCrossRef
24.
go back to reference Yang Y, Zhou H, Zhang G, Xue X. Targeting the canonical Wnt/beta-catenin pathway in cancer radioresistance: updates on the molecular mechanisms. J Cancer Res Ther. 2019;15:272–7.PubMed Yang Y, Zhou H, Zhang G, Xue X. Targeting the canonical Wnt/beta-catenin pathway in cancer radioresistance: updates on the molecular mechanisms. J Cancer Res Ther. 2019;15:272–7.PubMed
25.
go back to reference Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRef Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRef
26.
go back to reference Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012.PubMedCrossRef Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012.PubMedCrossRef
27.
go back to reference Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.PubMedCrossRef Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.PubMedCrossRef
29.
go back to reference Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 2017;51:1357–69.PubMedPubMedCentralCrossRef Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 2017;51:1357–69.PubMedPubMedCentralCrossRef
30.
go back to reference Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (review). Int J Mol Med. 2017;40:587–606.PubMedPubMedCentral Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (review). Int J Mol Med. 2017;40:587–606.PubMedPubMedCentral
31.
go back to reference Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.PubMedCrossRef Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.PubMedCrossRef
33.
go back to reference Ziv E, Yarmohammadi H, Boas FE, et al. Gene signature associated with upregulation of the Wnt/beta-catenin signaling pathway predicts tumor response to transarterial embolization. J Vasc Intervent Radiol. 2017;28:349-355.e341.CrossRef Ziv E, Yarmohammadi H, Boas FE, et al. Gene signature associated with upregulation of the Wnt/beta-catenin signaling pathway predicts tumor response to transarterial embolization. J Vasc Intervent Radiol. 2017;28:349-355.e341.CrossRef
34.
go back to reference Huang D, Du X. Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination. World J Gastroenterol. 2008;14:1823–7.PubMedPubMedCentralCrossRef Huang D, Du X. Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination. World J Gastroenterol. 2008;14:1823–7.PubMedPubMedCentralCrossRef
35.
go back to reference Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci. 2008;99:202–8.PubMedCrossRef Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci. 2008;99:202–8.PubMedCrossRef
36.
go back to reference Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.PubMedCrossRef Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129:199–221.PubMedCrossRef
37.
go back to reference Pedersen EA, Menon R, Bailey KM, et al. Activation of Wnt/beta-catenin in ewing sarcoma cells antagonizes EWS/ETS function and promotes phenotypic transition to more metastatic cell states. Cancer Res. 2016;76:5040–53.PubMedPubMedCentralCrossRef Pedersen EA, Menon R, Bailey KM, et al. Activation of Wnt/beta-catenin in ewing sarcoma cells antagonizes EWS/ETS function and promotes phenotypic transition to more metastatic cell states. Cancer Res. 2016;76:5040–53.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Vijayakumar S, Liu G, Rus IA, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell. 2011;19:601–12.PubMedPubMedCentralCrossRef Vijayakumar S, Liu G, Rus IA, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell. 2011;19:601–12.PubMedPubMedCentralCrossRef
40.
go back to reference Briski LM, Thomas DG, Patel RM, et al. Canonical Wnt/beta-catenin signaling activation in soft-tissue sarcomas: a comparative study of synovial sarcoma and leiomyosarcoma. Rare Tumors. 2018;10:2036361318813431.PubMedPubMedCentralCrossRef Briski LM, Thomas DG, Patel RM, et al. Canonical Wnt/beta-catenin signaling activation in soft-tissue sarcomas: a comparative study of synovial sarcoma and leiomyosarcoma. Rare Tumors. 2018;10:2036361318813431.PubMedPubMedCentralCrossRef
41.
go back to reference Singla A, Wang J, Yang R, et al. Wnt signaling in osteosarcoma. Adv Exp Med Biol. 2020;1258:125–39.PubMedCrossRef Singla A, Wang J, Yang R, et al. Wnt signaling in osteosarcoma. Adv Exp Med Biol. 2020;1258:125–39.PubMedCrossRef
42.
go back to reference Moneo V, Serelde BG, Blanco-Aparicio C, et al. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer. 2014;14:281.PubMedPubMedCentralCrossRef Moneo V, Serelde BG, Blanco-Aparicio C, et al. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer. 2014;14:281.PubMedPubMedCentralCrossRef
43.
go back to reference Perez M, Munoz-Galvan S, Jimenez-Garcia MP, Marin JJ, Carnero A. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA. Oncotarget. 2015;6:40557–74.PubMedPubMedCentralCrossRef Perez M, Munoz-Galvan S, Jimenez-Garcia MP, Marin JJ, Carnero A. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA. Oncotarget. 2015;6:40557–74.PubMedPubMedCentralCrossRef
44.
go back to reference Perez M, Peinado-Serrano J, Garcia-Heredia JM, et al. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget. 2016;7:67033–46.PubMedPubMedCentralCrossRef Perez M, Peinado-Serrano J, Garcia-Heredia JM, et al. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget. 2016;7:67033–46.PubMedPubMedCentralCrossRef
45.
go back to reference Ferrer I, Verdugo-Sivianes EM, Castilla MA, et al. Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene. 2016;35:2777–88.PubMedCrossRef Ferrer I, Verdugo-Sivianes EM, Castilla MA, et al. Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene. 2016;35:2777–88.PubMedCrossRef
46.
go back to reference Felipe-Abrio B, Verdugo-Sivianes EM, Saez C, Carnero A. Loss of MYBBP1A induces cancer stem cell activity in renal cancer. Cancers (Basel). 2019;11:235.CrossRef Felipe-Abrio B, Verdugo-Sivianes EM, Saez C, Carnero A. Loss of MYBBP1A induces cancer stem cell activity in renal cancer. Cancers (Basel). 2019;11:235.CrossRef
47.
go back to reference Lucena-Cacace A, Otero-Albiol D, Jimenez-Garcia MP, Munoz-Galvan S, Carnero A. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through Sirt1 and PARP. Clin Cancer Res. 2017;24:1202–15.PubMedCrossRef Lucena-Cacace A, Otero-Albiol D, Jimenez-Garcia MP, Munoz-Galvan S, Carnero A. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through Sirt1 and PARP. Clin Cancer Res. 2017;24:1202–15.PubMedCrossRef
48.
go back to reference Garcia-Heredia JM, Lucena-Cacace A, Verdugo-Sivianes EM, Perez M, Carnero A. The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the notch pathway by abducting NUMB. Clin Cancer Res. 2017;23:3871–83.PubMedCrossRef Garcia-Heredia JM, Lucena-Cacace A, Verdugo-Sivianes EM, Perez M, Carnero A. The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the notch pathway by abducting NUMB. Clin Cancer Res. 2017;23:3871–83.PubMedCrossRef
49.
go back to reference Ligon KL, Echelard Y, Assimacopoulos S, et al. Loss of Emx2 function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia. Development. 2003;130:2275–87.PubMedCrossRef Ligon KL, Echelard Y, Assimacopoulos S, et al. Loss of Emx2 function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia. Development. 2003;130:2275–87.PubMedCrossRef
50.
go back to reference Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13:4042–5.PubMedCrossRef Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13:4042–5.PubMedCrossRef
52.
go back to reference Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.PubMedCrossRef Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.PubMedCrossRef
53.
go back to reference Hawkins AG, Basrur V, da Veiga Leprevost F, et al. The Ewing sarcoma secretome and its response to activation of Wnt/beta-catenin signaling. Mol Cell Proteomics. 2018;17:901–12.PubMedPubMedCentralCrossRef Hawkins AG, Basrur V, da Veiga Leprevost F, et al. The Ewing sarcoma secretome and its response to activation of Wnt/beta-catenin signaling. Mol Cell Proteomics. 2018;17:901–12.PubMedPubMedCentralCrossRef
54.
go back to reference Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt signaling in ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. Curr Osteoporos Rep. 2017;15:239–46.PubMedCrossRef Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt signaling in ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. Curr Osteoporos Rep. 2017;15:239–46.PubMedCrossRef
55.
go back to reference Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef
56.
go back to reference Peiffer-Schneider S, Noonan FC, Mutch DG, et al. Mapping an endometrial cancer tumor suppressor gene at 10q25 and development of a bacterial clone contig for the consensus deletion interval. Genomics. 1998;52:9–16.PubMedCrossRef Peiffer-Schneider S, Noonan FC, Mutch DG, et al. Mapping an endometrial cancer tumor suppressor gene at 10q25 and development of a bacterial clone contig for the consensus deletion interval. Genomics. 1998;52:9–16.PubMedCrossRef
57.
go back to reference Daftary GS, Taylor HS. EMX2 gene expression in the female reproductive tract and aberrant expression in the endometrium of patients with endometriosis. J Clin Endocrinol Metab. 2004;89:2390–6.PubMedCrossRef Daftary GS, Taylor HS. EMX2 gene expression in the female reproductive tract and aberrant expression in the endometrium of patients with endometriosis. J Clin Endocrinol Metab. 2004;89:2390–6.PubMedCrossRef
Metadata
Title
Empty spiracles homeobox genes EMX1 and EMX2 regulate WNT pathway activation in sarcomagenesis
Authors
Manuel Pedro Jimenez-García
Antonio Lucena-Cacace
Daniel Otero-Albiol
Amancio Carnero
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Sarcoma
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02048-9

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine