Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

01-12-2021 | Melanoma | Research

Alloantigen-activated (AAA) CD4+ T cells reinvigorate host endogenous T cell immunity to eliminate pre-established tumors in mice

Authors: Kazuhiro Mochizuki, Shogo Kobayashi, Nobuhisa Takahashi, Kotaro Sugimoto, Hideki Sano, Yoshihiro Ohara, Shin Mineishi, Yi Zhang, Atsushi Kikuta

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Cancer vaccines that induce endogenous antitumor immunity represent an ideal strategy to overcome intractable cancers. However, doing this against a pre-established cancer using autologous immune cells has proven to be challenging. “Allogeneic effects” refers to the induction of an endogenous immune response upon adoptive transfer of allogeneic lymphocytes without utilizing hematopoietic stem cell transplantation. While allogeneic lymphocytes have a potent ability to activate host immunity as a cell adjuvant, novel strategies that can activate endogenous antitumor activity in cancer patients remain an unmet need. In this study, we established a new method to destroy pre-developed tumors and confer potent antitumor immunity in mice using alloantigen-activated CD4+ (named AAA-CD4+) T cells.

Methods

AAA-CD4+ T cells were generated from CD4+ T cells isolated from BALB/c mice in cultures with dendritic cells (DCs) induced from C57BL/6 (B6) mice. In this culture, allogeneic CD4+ T cells that recognize and react to B6 mouse-derived alloantigens are preferentially activated. These AAA-CD4+ T cells were directly injected into the pre-established melanoma in B6 mice to assess their ability to elicit antitumor immunity in vivo.

Results

Upon intratumoral injection, these AAA-CD4+ T cells underwent a dramatic expansion in the tumor and secreted high levels of IFN-γ and IL-2. This was accompanied by markedly increased infiltration of host-derived CD8+ T cells, CD4+ T cells, natural killer (NK) cells, DCs, and type-1 like macrophages. Selective depletion of host CD8+ T cells, rather than NK cells, abrogated this therapeutic effect. Thus, intratumoral administration of AAA-CD4+ T cells results in a robust endogenous CD8+ T cell response that destroys pre-established melanoma. This locally induced antitumor immunity elicited systemic protection to eliminate tumors at distal sites, persisted over 6 months in vivo, and protected the animals from tumor re-challenge. Notably, the injected AAA-CD4+ T cells disappeared within 7 days and caused no adverse reactions.

Conclusions

Our findings indicate that AAA-CD4+ T cells reinvigorate endogenous cytotoxic T cells to eradicate pre-established melanoma and induce long-term protective antitumor immunity. This approach can be immediately applied to patients with advanced melanoma and may have broad implications in the treatment of other types of solid tumors.
Appendix
Available only for authorised users
Literature
2.
go back to reference Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.PubMedCrossRef Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.PubMedCrossRef
3.
go back to reference Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.PubMedCrossRefPubMedCentral Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.PubMedCrossRefPubMedCentral
4.
go back to reference Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, et al. Programmed Death-Ligand 1 expression and response to the anti-programmed Death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34:4102–9.PubMedCrossRefPubMedCentral Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, et al. Programmed Death-Ligand 1 expression and response to the anti-programmed Death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34:4102–9.PubMedCrossRefPubMedCentral
5.
go back to reference Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.PubMedCrossRefPubMedCentral Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.PubMedCrossRefPubMedCentral
6.
go back to reference Ferris RL, Blumenschein GJ, Fayette J, Guigay J, Colevas AD, Harrington L. LK, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67. Ferris RL, Blumenschein GJ, Fayette J, Guigay J, Colevas AD, Harrington L. LK, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.
7.
go back to reference Pitt JM, Ve ́ tizou M, Daille` re R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.PubMedCrossRef Pitt JM, Ve ́ tizou M, Daille` re R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.PubMedCrossRef
8.
go back to reference Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77:817–22.PubMedCrossRef Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77:817–22.PubMedCrossRef
10.
go back to reference Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–24.PubMedCrossRef Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–24.PubMedCrossRef
14.
go back to reference Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: peptide-based vaccines in anticancer therapy. Oncoimmunology. 2018;7(12):e1511506.PubMedCrossRefPubMedCentral Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: peptide-based vaccines in anticancer therapy. Oncoimmunology. 2018;7(12):e1511506.PubMedCrossRefPubMedCentral
15.
go back to reference Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16:1092–100.PubMedCrossRefPubMedCentral Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16:1092–100.PubMedCrossRefPubMedCentral
16.
go back to reference Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68.PubMedCrossRef Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68.PubMedCrossRef
17.
go back to reference Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31:2396–403.PubMedCrossRef Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31:2396–403.PubMedCrossRef
18.
go back to reference Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccineGV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.PubMedCrossRef Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccineGV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.PubMedCrossRef
19.
go back to reference Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–35.PubMedCrossRef Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–35.PubMedCrossRef
20.
go back to reference Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.PubMedCrossRef Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.PubMedCrossRef
22.
go back to reference Aarntzen EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, et al. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 2013;73:19–29.PubMedCrossRef Aarntzen EH, De Vries IJ, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, et al. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 2013;73:19–29.PubMedCrossRef
24.
go back to reference Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17:563–70.PubMedCrossRef Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17:563–70.PubMedCrossRef
25.
go back to reference Alexander P, Delorme EJ, HALL JG. The effect of lymphoid cells from the lymph of specifically immunized sheep on the growth of primary sarcomata in rats. Lancet. 1966;287:1186–9. Alexander P, Delorme EJ, HALL JG. The effect of lymphoid cells from the lymph of specifically immunized sheep on the growth of primary sarcomata in rats. Lancet. 1966;287:1186–9.
26.
go back to reference Katz DH, Ellman L, Paul WE, Green I, Benacerra B. Resistance of Guinea Pigs to Leukemia following transfer of immunocompetent allogeneic lymphoid cells. Cancer Res. 1972;32:133–40.PubMed Katz DH, Ellman L, Paul WE, Green I, Benacerra B. Resistance of Guinea Pigs to Leukemia following transfer of immunocompetent allogeneic lymphoid cells. Cancer Res. 1972;32:133–40.PubMed
27.
go back to reference Fefer A. Treatment of a moloney lymphoma with cyclophosphamide and H-2-incompatible spleen cells. Cancer Res. 1973;33:641–4.PubMed Fefer A. Treatment of a moloney lymphoma with cyclophosphamide and H-2-incompatible spleen cells. Cancer Res. 1973;33:641–4.PubMed
28.
go back to reference Kondo M, McCarty MF. Rationale for a novel immunotherapy of cancer with allogeneic lymphocyte infusion. Med Hypotheses. 1984;15:241–77.PubMedCrossRef Kondo M, McCarty MF. Rationale for a novel immunotherapy of cancer with allogeneic lymphocyte infusion. Med Hypotheses. 1984;15:241–77.PubMedCrossRef
29.
go back to reference Porter DL, Connors JM, Van Deerlin VMD, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol. 1999;17:1234–43.PubMedCrossRef Porter DL, Connors JM, Van Deerlin VMD, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol. 1999;17:1234–43.PubMedCrossRef
30.
go back to reference Strair RK, Schaar D, Medina D, Todd MB, Aisner J, DiPaola RS, et al. Antineoplastic effects of partially HLA-matched irradiated blood mononuclear cells in patients with renal cell carcinoma. J Clin Oncol. 2003;21:3785–91.PubMedCrossRef Strair RK, Schaar D, Medina D, Todd MB, Aisner J, DiPaola RS, et al. Antineoplastic effects of partially HLA-matched irradiated blood mononuclear cells in patients with renal cell carcinoma. J Clin Oncol. 2003;21:3785–91.PubMedCrossRef
31.
go back to reference Ballenn KK, Becker PS, Emmons RVB, Fitzgerald TJ, Hsieh CC, Liu Q, et al. Low-dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood. 2002;100:442–50.CrossRef Ballenn KK, Becker PS, Emmons RVB, Fitzgerald TJ, Hsieh CC, Liu Q, et al. Low-dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood. 2002;100:442–50.CrossRef
32.
go back to reference Su X, Guo S, Zhou C, Wang D, Ma W, Zhang S. A simple and effective method for cancer immunotherapy by inactivated allogeneic leukocytes infusion. Int J Cancer. 2009;124:1142–51.PubMedCrossRef Su X, Guo S, Zhou C, Wang D, Ma W, Zhang S. A simple and effective method for cancer immunotherapy by inactivated allogeneic leukocytes infusion. Int J Cancer. 2009;124:1142–51.PubMedCrossRef
33.
go back to reference Symons HJ, Levy MY, Wang J, Zhou X, Zhou G, Cohen SE, et al. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008;14:499–509.PubMedCrossRefPubMedCentral Symons HJ, Levy MY, Wang J, Zhou X, Zhou G, Cohen SE, et al. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008;14:499–509.PubMedCrossRefPubMedCentral
34.
go back to reference Har-Noy M, Zeira M, Weiss L, Fingerut E, Or R, Slavin S. Allogeneic CD3/CD28 cross-linked Th1 memory cells provide potent adjuvant effects for active immunotherapy of leukemia/lymphoma. Leuk Res. 2009;33:525–38.PubMedCrossRef Har-Noy M, Zeira M, Weiss L, Fingerut E, Or R, Slavin S. Allogeneic CD3/CD28 cross-linked Th1 memory cells provide potent adjuvant effects for active immunotherapy of leukemia/lymphoma. Leuk Res. 2009;33:525–38.PubMedCrossRef
35.
go back to reference Janikashvili N, LaCasse CJ, Larmonier C, Trad M, Herrell A, Bustamante S, et al. Allogeneic effector/memory Th-1 cells impair FoxP3 regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood. 2011;117:1555–64.PubMedCrossRefPubMedCentral Janikashvili N, LaCasse CJ, Larmonier C, Trad M, Herrell A, Bustamante S, et al. Allogeneic effector/memory Th-1 cells impair FoxP3 regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood. 2011;117:1555–64.PubMedCrossRefPubMedCentral
36.
go back to reference Shi G, Zhou C, Wang D, Ma W, Liu B, Zhang S. Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes. Cancer Lett. 2014;343:42–50.PubMedCrossRef Shi G, Zhou C, Wang D, Ma W, Liu B, Zhang S. Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes. Cancer Lett. 2014;343:42–50.PubMedCrossRef
37.
go back to reference Tang Y, Ma W, Zhou C, Wang D, Zhang S. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity. J Chin Med Assoc. 2018;81:316–23.PubMedCrossRef Tang Y, Ma W, Zhou C, Wang D, Zhang S. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity. J Chin Med Assoc. 2018;81:316–23.PubMedCrossRef
38.
go back to reference Mochizuki K, Meng L, Mochizuki I, Tong Q, He S, Liu Y, et al. Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice. Blood. 2016;127:3270–80. Mochizuki K, Meng L, Mochizuki I, Tong Q, He S, Liu Y, et al. Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice. Blood. 2016;127:3270–80.
39.
go back to reference Meng L, Bai Z, He S, Mochizuki K, Liu L, Purushe J, et al. The notch ligand DLL4 defines a capability of human dendritic cells in regulating Th1 and Th17 differentiation. J Immunol. 2016;196:1070–80.PubMedCrossRef Meng L, Bai Z, He S, Mochizuki K, Liu L, Purushe J, et al. The notch ligand DLL4 defines a capability of human dendritic cells in regulating Th1 and Th17 differentiation. J Immunol. 2016;196:1070–80.PubMedCrossRef
40.
go back to reference Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ. Immunotherapy of malignancy by emopenin vivoemclose gene transfer into tumors. Proc Natl Acad Sci U S A. 1993;90:4645–9.PubMedCrossRefPubMedCentral Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ. Immunotherapy of malignancy by emopenin vivoemclose gene transfer into tumors. Proc Natl Acad Sci U S A. 1993;90:4645–9.PubMedCrossRefPubMedCentral
41.
go back to reference Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A. 1996;93:15388–93.PubMedCrossRefPubMedCentral Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A. 1996;93:15388–93.PubMedCrossRefPubMedCentral
42.
go back to reference Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW, et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer. 2004;109:685–90.PubMedCrossRef Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW, et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer. 2004;109:685–90.PubMedCrossRef
43.
go back to reference Rozera C, Cappellini CA, D’Agostino G, Santodonato L, Castiello L, Urbani F, et al. Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. J Transl Med. 2015;13:139.PubMedCrossRefPubMedCentral Rozera C, Cappellini CA, D’Agostino G, Santodonato L, Castiello L, Urbani F, et al. Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. J Transl Med. 2015;13:139.PubMedCrossRefPubMedCentral
44.
go back to reference Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112:4371–83.PubMedCrossRef Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112:4371–83.PubMedCrossRef
45.
go back to reference Robert S. Negrin. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:225–30.CrossRef Robert S. Negrin. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:225–30.CrossRef
46.
go back to reference Blazar BR, Hill GR, Murphy WJ. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol. 2020;17:475–92.PubMedCrossRefPubMedCentral Blazar BR, Hill GR, Murphy WJ. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol. 2020;17:475–92.PubMedCrossRefPubMedCentral
47.
go back to reference Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior Graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high- risk acute leukemia: an historic comparison. Biol Blood Marrow Transplant. 2011;17:821–30.PubMedCrossRef Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior Graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high- risk acute leukemia: an historic comparison. Biol Blood Marrow Transplant. 2011;17:821–30.PubMedCrossRef
48.
go back to reference Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia. 2020;34:1433–43.PubMedCrossRef Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia. 2020;34:1433–43.PubMedCrossRef
49.
go back to reference Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–5.PubMedCrossRef Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–5.PubMedCrossRef
50.
go back to reference Reddyy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JLM. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia response. Nat Med. 2005;11:1244–9.CrossRef Reddyy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JLM. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia response. Nat Med. 2005;11:1244–9.CrossRef
51.
go back to reference Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 2017;9:347–60.PubMedCrossRef Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 2017;9:347–60.PubMedCrossRef
52.
go back to reference Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.PubMedCrossRef Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.PubMedCrossRef
53.
go back to reference Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med. 1983;157:613–27.PubMedCrossRefPubMedCentral Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med. 1983;157:613–27.PubMedCrossRefPubMedCentral
54.
go back to reference Banchereau J, Briere JF, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRef Banchereau J, Briere JF, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.PubMedCrossRef
55.
go back to reference Bilate AM, Lafaille JJ. Induced CD4 + Foxp3 + regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733–58.PubMedCrossRef Bilate AM, Lafaille JJ. Induced CD4 + Foxp3 + regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733–58.PubMedCrossRef
56.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRef
57.
go back to reference Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the Tumor Immune Microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedCrossRefPubMedCentral Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the Tumor Immune Microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedCrossRefPubMedCentral
58.
go back to reference Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 cancer immunotherapy requires T Cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148–61.PubMedCrossRefPubMedCentral Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 cancer immunotherapy requires T Cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148–61.PubMedCrossRefPubMedCentral
59.
go back to reference Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8 + memory T cells. Nature. 2006;441:890–93.PubMedCrossRefPubMedCentral Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8 + memory T cells. Nature. 2006;441:890–93.PubMedCrossRefPubMedCentral
60.
go back to reference Mitchell DM, Ravkov EV, Williams MA. Distinct Roles for IL-2 and IL-15 in the Differentiation and survival of CD8 + effector and memory T Cells. J Immunol. 2010;184:6719–30.PubMedCrossRef Mitchell DM, Ravkov EV, Williams MA. Distinct Roles for IL-2 and IL-15 in the Differentiation and survival of CD8 + effector and memory T Cells. J Immunol. 2010;184:6719–30.PubMedCrossRef
61.
go back to reference Khong HT, Wang QJ, Rosenberg SA. Identification of Multiple Antigens Recognized by Tumor- Infiltrating Lymphocytes From a Single Patient: Tumor Escape by Antigen Loss and Loss of MHC Expression. J Immunother. 2004;27:184–90.PubMedCrossRefPubMedCentral Khong HT, Wang QJ, Rosenberg SA. Identification of Multiple Antigens Recognized by Tumor- Infiltrating Lymphocytes From a Single Patient: Tumor Escape by Antigen Loss and Loss of MHC Expression. J Immunother. 2004;27:184–90.PubMedCrossRefPubMedCentral
64.
go back to reference Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses. Cancer Res. 2004;64:5839–49.PubMedCrossRef Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses. Cancer Res. 2004;64:5839–49.PubMedCrossRef
66.
go back to reference Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.PubMedCrossRef Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.PubMedCrossRef
67.
go back to reference Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851:414–21.PubMedCrossRef Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851:414–21.PubMedCrossRef
71.
go back to reference Hu KX, Du X, Guo M, Yu CL, Qiao JH, Sun QY, et al. Comparative study of micro-transplantation from HLA fully mismatched unrelated and partly matched related donors in acute myeloid leukemia. Am J Hematol. 2020;95:630–6.PubMedCrossRef Hu KX, Du X, Guo M, Yu CL, Qiao JH, Sun QY, et al. Comparative study of micro-transplantation from HLA fully mismatched unrelated and partly matched related donors in acute myeloid leukemia. Am J Hematol. 2020;95:630–6.PubMedCrossRef
72.
go back to reference Guo M, Hu KX, Yu CL, Sun QY, Qiao JH, Wang DH, et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood. 2011;17:936–41.CrossRef Guo M, Hu KX, Yu CL, Sun QY, Qiao JH, Wang DH, et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood. 2011;17:936–41.CrossRef
73.
go back to reference Guo M, Hu KX, Liu GX, Yu CL, Qiao JH, Sun QY, et al. HLA-mismatched stem-cell microtransplantation as postremission therapyfor acute myeloid leukemia: long-term follow-up. J Clin Oncol. 2012;30:4084–90.PubMedCrossRef Guo M, Hu KX, Liu GX, Yu CL, Qiao JH, Sun QY, et al. HLA-mismatched stem-cell microtransplantation as postremission therapyfor acute myeloid leukemia: long-term follow-up. J Clin Oncol. 2012;30:4084–90.PubMedCrossRef
74.
go back to reference Guo M, Chao NJ, Li JY, Rizzieri DA, Sun QY, Mohrbacher A, et al. HLA-Mismatched Microtransplant in Older Patients Newly Diagnosed With Acute Myeloid Leukemia: Results From the Microtransplantation Interest Group. JAMA Oncol. 2018;4:54–62.PubMedCrossRef Guo M, Chao NJ, Li JY, Rizzieri DA, Sun QY, Mohrbacher A, et al. HLA-Mismatched Microtransplant in Older Patients Newly Diagnosed With Acute Myeloid Leukemia: Results From the Microtransplantation Interest Group. JAMA Oncol. 2018;4:54–62.PubMedCrossRef
Metadata
Title
Alloantigen-activated (AAA) CD4+ T cells reinvigorate host endogenous T cell immunity to eliminate pre-established tumors in mice
Authors
Kazuhiro Mochizuki
Shogo Kobayashi
Nobuhisa Takahashi
Kotaro Sugimoto
Hideki Sano
Yoshihiro Ohara
Shin Mineishi
Yi Zhang
Atsushi Kikuta
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02102-6

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine