Skip to main content
Top
Published in: BMC Pediatrics 1/2016

Open Access 01-12-2016 | Research article

Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment

Authors: Steven D. Hicks, Cherry Ignacio, Karen Gentile, Frank A. Middleton

Published in: BMC Pediatrics | Issue 1/2016

Login to get access

Abstract

Background

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that lacks adequate screening tools, often delaying diagnosis and therapeutic interventions. Despite a substantial genetic component, no single gene variant accounts for >1 % of ASD incidence. Epigenetic mechanisms that include microRNAs (miRNAs) may contribute to the ASD phenotype by altering networks of neurodevelopmental genes. The extracellular availability of miRNAs allows for painless, noninvasive collection from biofluids. In this study, we investigated the potential for saliva-based miRNAs to serve as diagnostic screening tools and evaluated their potential functional importance.

Methods

Salivary miRNA was purified from 24 ASD subjects and 21 age- and gender-matched control subjects. The ASD group included individuals with mild ASD (DSM-5 criteria and Autism Diagnostic Observation Schedule) and no history of neurologic disorder, pre-term birth, or known chromosomal abnormality. All subjects completed a thorough neurodevelopmental assessment with the Vineland Adaptive Behavior Scales at the time of saliva collection. A total of 246 miRNAs were detected and quantified in at least half the samples by RNA-Seq and used to perform between-group comparisons with non-parametric testing, multivariate logistic regression and classification analyses, as well as Monte-Carlo Cross-Validation (MCCV). The top miRNAs were examined for correlations with measures of adaptive behavior. Functional enrichment analysis of the highest confidence mRNA targets of the top differentially expressed miRNAs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), as well as the Simons Foundation Autism Database (AutDB) of ASD candidate genes.

Results

Fourteen miRNAs were differentially expressed in ASD subjects compared to controls (p <0.05; FDR <0.15) and showed more than 95 % accuracy at distinguishing subject groups in the best-fit logistic regression model. MCCV revealed an average ROC-AUC value of 0.92 across 100 simulations, further supporting the robustness of the findings. Most of the 14 miRNAs showed significant correlations with Vineland neurodevelopmental scores. Functional enrichment analysis detected significant over-representation of target gene clusters related to transcriptional activation, neuronal development, and AutDB genes.

Conclusion

Measurement of salivary miRNA in this pilot study of subjects with mild ASD demonstrated differential expression of 14 miRNAs that are expressed in the developing brain, impact mRNAs related to brain development, and correlate with neurodevelopmental measures of adaptive behavior. These miRNAs have high specificity and cross-validated utility as a potential screening tool for ASD.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wetherby AM, Brosnan-Maddox S, Peace V, Newton L. Validation of the Infant-Toddler Checklist as a broadband screener for autism spectrum disorders from 9 to 24 months of age. Autism. 2008;12:487–511.CrossRefPubMedPubMedCentral Wetherby AM, Brosnan-Maddox S, Peace V, Newton L. Validation of the Infant-Toddler Checklist as a broadband screener for autism spectrum disorders from 9 to 24 months of age. Autism. 2008;12:487–511.CrossRefPubMedPubMedCentral
4.
go back to reference Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009;163:907–14.CrossRefPubMed Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009;163:907–14.CrossRefPubMed
5.
go back to reference Constantino JN, Todorov A, Hilton C, Law P, Zhang Y, Molloy E, Fitzgerald R, Geschwind D. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013;18:137–8.CrossRefPubMed Constantino JN, Todorov A, Hilton C, Law P, Zhang Y, Molloy E, Fitzgerald R, Geschwind D. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013;18:137–8.CrossRefPubMed
6.
go back to reference Xu LM, Li JR, Huang Y, Zhao M, Tang X, Wei L. Autism: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 2012;40:D1016–22.CrossRefPubMed Xu LM, Li JR, Huang Y, Zhao M, Tang X, Wei L. Autism: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 2012;40:D1016–22.CrossRefPubMed
7.
go back to reference Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012;3:1–9. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012;3:1–9.
8.
go back to reference Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva are concentrated in exosomes. PLoS One. 2012;7:e30679.CrossRefPubMedPubMedCentral Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva are concentrated in exosomes. PLoS One. 2012;7:e30679.CrossRefPubMedPubMedCentral
9.
go back to reference Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS. Heterogeneous dysregulation of microRNAs across autism spectrum. Neurogenetics. 2008;9:153–61.CrossRefPubMed Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS. Heterogeneous dysregulation of microRNAs across autism spectrum. Neurogenetics. 2008;9:153–61.CrossRefPubMed
10.
go back to reference Talebizadeh Z, Butler MG, Theodoro MF. Feasability and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008;1:1–11.CrossRef Talebizadeh Z, Butler MG, Theodoro MF. Feasability and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008;1:1–11.CrossRef
11.
go back to reference Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2:23.CrossRefPubMedPubMedCentral Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2:23.CrossRefPubMedPubMedCentral
12.
go back to reference Ghahramani-Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011;1380:85–97.CrossRefPubMed Ghahramani-Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011;1380:85–97.CrossRefPubMed
13.
go back to reference Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N. Serum microRNA profiles in children with autism. Mol Autism. 2014;5:40.CrossRef Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N. Serum microRNA profiles in children with autism. Mol Autism. 2014;5:40.CrossRef
14.
go back to reference Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across developing human brain. Mol Psychiatry. 2014;19:848–52.CrossRefPubMed Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across developing human brain. Mol Psychiatry. 2014;19:848–52.CrossRefPubMed
15.
go back to reference Shao NY, Hu HY, Xu Y, Hu H, Menzel C, Li N, Chen W, Khaitovich P. Comp-rehensive survey of human brain microRNA by deep sequencing. BMC Genomics. 2010;11:409.CrossRefPubMedPubMedCentral Shao NY, Hu HY, Xu Y, Hu H, Menzel C, Li N, Chen W, Khaitovich P. Comp-rehensive survey of human brain microRNA by deep sequencing. BMC Genomics. 2010;11:409.CrossRefPubMedPubMedCentral
16.
go back to reference Banerjee-Basu S, Packer A. SFARI Gene: an evolving database for the autism research community. Dis Model Mech. 2010;3:133–5.CrossRefPubMed Banerjee-Basu S, Packer A. SFARI Gene: an evolving database for the autism research community. Dis Model Mech. 2010;3:133–5.CrossRefPubMed
17.
go back to reference Daniels AM, Halladay AK, Shih A, Elder LM, Dawson G. Approaches to enhancing the early detection of autism spectrum disorders: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry. 2014;53:141–52.CrossRefPubMed Daniels AM, Halladay AK, Shih A, Elder LM, Dawson G. Approaches to enhancing the early detection of autism spectrum disorders: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry. 2014;53:141–52.CrossRefPubMed
18.
go back to reference Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A. 1997;94(10):5395–400.CrossRefPubMedPubMedCentral Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A. 1997;94(10):5395–400.CrossRefPubMedPubMedCentral
19.
go back to reference Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci. 2004;7:113–7.CrossRefPubMed Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci. 2004;7:113–7.CrossRefPubMed
20.
go back to reference MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CSL, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. AJHG. 2005;76(5):1074–80.CrossRef MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CSL, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. AJHG. 2005;76(5):1074–80.CrossRef
21.
go back to reference Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the micro-RNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer. 2010;9:232.CrossRefPubMedPubMedCentral Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the micro-RNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer. 2010;9:232.CrossRefPubMedPubMedCentral
22.
go back to reference Xu W, Liu M, Peng X, Zhou P, Zhou J, Xu K, Xu H, Jiang S. miR-24-3p and MiR27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. Int J Oncol. 2012;42:757–66.CrossRefPubMed Xu W, Liu M, Peng X, Zhou P, Zhou J, Xu K, Xu H, Jiang S. miR-24-3p and MiR27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. Int J Oncol. 2012;42:757–66.CrossRefPubMed
23.
go back to reference Siefel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108:11662–7.CrossRef Siefel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108:11662–7.CrossRef
24.
go back to reference Song Y, Tian X, Zhang S, Zhang Y, Li X, Li D, Cheng Y, Zhang J, Kang C, Zhao W. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res. 2011;1387:134–40.CrossRefPubMed Song Y, Tian X, Zhang S, Zhang Y, Li X, Li D, Cheng Y, Zhang J, Kang C, Zhao W. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res. 2011;1387:134–40.CrossRefPubMed
25.
go back to reference Li Y, Xu J, Chen H, Li S, Zhao Z, Shao T, Jiang T, Ren H, Kang C, Li X. Compre-hensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 2013;41:e203.CrossRefPubMedPubMedCentral Li Y, Xu J, Chen H, Li S, Zhao Z, Shao T, Jiang T, Ren H, Kang C, Li X. Compre-hensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 2013;41:e203.CrossRefPubMedPubMedCentral
26.
go back to reference Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Cook EH, Buxbaum JD, Devlin B, Gallagher L, Betancur C, Scherer SW. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.CrossRefPubMedPubMedCentral Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Cook EH, Buxbaum JD, Devlin B, Gallagher L, Betancur C, Scherer SW. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.CrossRefPubMedPubMedCentral
27.
go back to reference Geschwind DH. Genetics of autism spectrum disorder. Trends Cog Sci. 2011;15:409–16.CrossRef Geschwind DH. Genetics of autism spectrum disorder. Trends Cog Sci. 2011;15:409–16.CrossRef
28.
go back to reference Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill S, Stevens CR, Schubert CR, Greenberg ME, Gabriel SB, Walsh CA. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet. 2012;8(4):e1002635.CrossRefPubMedPubMedCentral Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill S, Stevens CR, Schubert CR, Greenberg ME, Gabriel SB, Walsh CA. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet. 2012;8(4):e1002635.CrossRefPubMedPubMedCentral
Metadata
Title
Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment
Authors
Steven D. Hicks
Cherry Ignacio
Karen Gentile
Frank A. Middleton
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2016
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-016-0586-x

Other articles of this Issue 1/2016

BMC Pediatrics 1/2016 Go to the issue