Skip to main content
Top
Published in: BMC Pediatrics 1/2016

Open Access 01-12-2016 | Research article

Seasonal variation in the international normalized ratio of neonates and its relationship with ambient temperature

Authors: Shigeo Iijima, Katsuyuki Sekii, Toru Baba, Daizo Ueno, Akira Ohishi

Published in: BMC Pediatrics | Issue 1/2016

Login to get access

Abstract

Background

The morbidity and mortality rates due to cardiovascular events such as myocardial infarction are known to exhibit seasonal variations. Moreover, changes in the ambient temperature are reportedly associated with an increase in these events, which may potentially involve blood coagulation markers. Bleeding due to vitamin K deficiency in neonates, which is associated with high mortality and a high frequency of neurological sequelae, is more commonly observed during the summer season and in warm regions in Japan. To determine the presence of seasonal variation and the influence of ambient temperature on blood coagulation markers in healthy term neonates, we assessed the international normalized ratio (INR) values measured using CoaguChek XS.

Methods

We studied 488 consecutive healthy term neonates who were born at a perinatal center between July 2012 and June 2013. The INR values were measured using CoaguChek XS in 4-day-old neonates who received nursing care in the newborn nursery throughout the duration of hospitalization. The seasonal variations in the INR values and environmental effects on the INR were assessed.

Results

The mean monthly INR values peaked in July (1.13 ± 0.08), whereas the lowest values were observed in January (1.05 ± 0.08). Higher levels of INR were observed during the summer season (June to August) than during the winter season (December to February). Simple linear regression analysis indicated the presence of weakly positive but significant correlations between INR and outdoor temperature (r = 0.25, p < 0.001), outdoor relative humidity (r = 0.19, p < 0.001), and room relative humidity (r = 0.24, p < 0.001), and the presence of a significant negative correlation between INR and room temperature (r = −0.13, p = 0.02). Furthermore, multiple linear regression analysis showed that only outdoor temperature significantly influenced the INR.

Conclusions

A seasonal variation in the INR values was observed among neonates, possibly due to the variation in ambient temperature. Even though the neonates received nursing care in the newborn nursery that was constantly air-conditioned, the outdoor temperature was the most influential factor on INR.
Literature
1.
go back to reference Keatinge WR, Coleshaw SR, Cotter F, Mattock M, Murphy M, Chelliah R. Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. BMJ (Clin Res Ed). 1984;289:1405–8.CrossRef Keatinge WR, Coleshaw SR, Cotter F, Mattock M, Murphy M, Chelliah R. Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. BMJ (Clin Res Ed). 1984;289:1405–8.CrossRef
2.
go back to reference Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994;343:435–9.CrossRefPubMed Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994;343:435–9.CrossRefPubMed
3.
go back to reference Enquselassie F, Dobson AJ, Alexander HM, Steele PL. Seasons, temperature and coronary disease. Int J Epidemiol. 1993;22:632–6.CrossRefPubMed Enquselassie F, Dobson AJ, Alexander HM, Steele PL. Seasons, temperature and coronary disease. Int J Epidemiol. 1993;22:632–6.CrossRefPubMed
4.
go back to reference Gallerani M, Boari B, de Toma D, Salmi R, Manfredini R. Seasonal variation in the occurrence of deep vein thrombosis. Med Sci Monit. 2004;10:191–6. Gallerani M, Boari B, de Toma D, Salmi R, Manfredini R. Seasonal variation in the occurrence of deep vein thrombosis. Med Sci Monit. 2004;10:191–6.
5.
go back to reference Gallerani M, Boari B, Smolensky MH, Salmi R, Fabbri D, Contato E, et al. Seasonal variation in occurrence of pulmonary embolism: analysis of the database of the Emilia-Romagna resion, Italy. Chronobiol Int. 2007;24:143–60.CrossRefPubMed Gallerani M, Boari B, Smolensky MH, Salmi R, Fabbri D, Contato E, et al. Seasonal variation in occurrence of pulmonary embolism: analysis of the database of the Emilia-Romagna resion, Italy. Chronobiol Int. 2007;24:143–60.CrossRefPubMed
6.
go back to reference Schwartz J, Samet JM, Patz JA. Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology. 2004;15:755–61.CrossRefPubMed Schwartz J, Samet JM, Patz JA. Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology. 2004;15:755–61.CrossRefPubMed
7.
go back to reference Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol. 2008;168:1397–408.CrossRefPubMed Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol. 2008;168:1397–408.CrossRefPubMed
8.
go back to reference Pichler E, Pichler L. The neonatal coagulation system and vitamin K deficiency bleeding-a mini review. Wien Med Wochenschr. 2008;158:385–95.CrossRefPubMed Pichler E, Pichler L. The neonatal coagulation system and vitamin K deficiency bleeding-a mini review. Wien Med Wochenschr. 2008;158:385–95.CrossRefPubMed
9.
go back to reference Hanawa Y, Maki M, Murata B, Matsuyama E, Yamamoto Y, Nagao T, et al. The second nation-wide survey in Japan of vitamin K deficiency in infancy. Eur J Pediatr. 1988;147:472–7.CrossRefPubMed Hanawa Y, Maki M, Murata B, Matsuyama E, Yamamoto Y, Nagao T, et al. The second nation-wide survey in Japan of vitamin K deficiency in infancy. Eur J Pediatr. 1988;147:472–7.CrossRefPubMed
10.
go back to reference Bull GM, Brozovic M, Chakrabarti R, Meade TW, Morton J, North WR, et al. Relationship of air temperature to various chemical, haematological, and haemostatic variables. J Clin Pathol. 1979;32:16–20.CrossRefPubMedPubMedCentral Bull GM, Brozovic M, Chakrabarti R, Meade TW, Morton J, North WR, et al. Relationship of air temperature to various chemical, haematological, and haemostatic variables. J Clin Pathol. 1979;32:16–20.CrossRefPubMedPubMedCentral
11.
go back to reference Stout RW, Crawford V. Seasonal variations in fibrinogen concentrations among elderly people. Lancet. 1991;338:9–13.CrossRefPubMed Stout RW, Crawford V. Seasonal variations in fibrinogen concentrations among elderly people. Lancet. 1991;338:9–13.CrossRefPubMed
12.
go back to reference Neild PJ, Syndercombe-Court D, Keatinge WR, Donaldson GC, Mattock M, Caunce M. Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clin Sci (Lond). 1994;86:43–8.CrossRef Neild PJ, Syndercombe-Court D, Keatinge WR, Donaldson GC, Mattock M, Caunce M. Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clin Sci (Lond). 1994;86:43–8.CrossRef
13.
go back to reference De Lorenzo F, Kadziola Z, Mukherjee M, Saba N, Kakkar W. Haemodynamic responses and changes of haemostatic risk factors in cold-adapted humans. QJM. 1999;92:509–13.CrossRefPubMed De Lorenzo F, Kadziola Z, Mukherjee M, Saba N, Kakkar W. Haemodynamic responses and changes of haemostatic risk factors in cold-adapted humans. QJM. 1999;92:509–13.CrossRefPubMed
14.
go back to reference Yeh CJ, Chan P, Pan WH. Values of blood coagulating factors vary with ambient temperature: the Cardiovascular Disease Risk Factor Two-Township Study in Taiwan. Clin J Physiol. 1996;39:111–6. Yeh CJ, Chan P, Pan WH. Values of blood coagulating factors vary with ambient temperature: the Cardiovascular Disease Risk Factor Two-Township Study in Taiwan. Clin J Physiol. 1996;39:111–6.
15.
go back to reference Iijima S, Baba T, Ueno D, Ohishi A. International normalized ratio testing with point-of-care coagulometer in healthy term neonates. BMC Pediatr. 2014;14:179.CrossRefPubMedPubMedCentral Iijima S, Baba T, Ueno D, Ohishi A. International normalized ratio testing with point-of-care coagulometer in healthy term neonates. BMC Pediatr. 2014;14:179.CrossRefPubMedPubMedCentral
16.
go back to reference Hentschel G. A human biometeorology classification of climate for large and local scales. In: Proc. WMO/HMO/UNEP Symposium on Climate and Human Health. 1986. Hentschel G. A human biometeorology classification of climate for large and local scales. In: Proc. WMO/HMO/UNEP Symposium on Climate and Human Health. 1986.
17.
go back to reference Rudnicka AR, Rumley A, Lowe GD, Strachan DP. Diurnal, seasonal, and blood-processing patterns in levels of circulating fibrinogen, fibrin D-dimer, C-reactive protein, tissue plasminogen activator, and von Willebrand factor in a 45-year-old population. Circulation. 2007;115:996–1003.CrossRefPubMed Rudnicka AR, Rumley A, Lowe GD, Strachan DP. Diurnal, seasonal, and blood-processing patterns in levels of circulating fibrinogen, fibrin D-dimer, C-reactive protein, tissue plasminogen activator, and von Willebrand factor in a 45-year-old population. Circulation. 2007;115:996–1003.CrossRefPubMed
18.
go back to reference Stout RW, Crawford VL, McDermott MJ, Rocks MJ, Morris TC. Seasonal changes in haemostatic factors in young and elderly subjects. Age Aging. 1996;25:256–8.CrossRef Stout RW, Crawford VL, McDermott MJ, Rocks MJ, Morris TC. Seasonal changes in haemostatic factors in young and elderly subjects. Age Aging. 1996;25:256–8.CrossRef
19.
go back to reference Keatinge WR. Seasonal mortality among elderly people with unrestricted home heating. Br Med J (Clin Res Ed). 1986;293:732–3.CrossRef Keatinge WR. Seasonal mortality among elderly people with unrestricted home heating. Br Med J (Clin Res Ed). 1986;293:732–3.CrossRef
20.
go back to reference Collins KJ. Low indoor temperatures and morbidity in the elderly. Age Aging. 1986;15:212–20.CrossRef Collins KJ. Low indoor temperatures and morbidity in the elderly. Age Aging. 1986;15:212–20.CrossRef
21.
go back to reference Weaver IC, Cervoni N, Champagne FA, D’Alesso AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.CrossRefPubMed Weaver IC, Cervoni N, Champagne FA, D’Alesso AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.CrossRefPubMed
Metadata
Title
Seasonal variation in the international normalized ratio of neonates and its relationship with ambient temperature
Authors
Shigeo Iijima
Katsuyuki Sekii
Toru Baba
Daizo Ueno
Akira Ohishi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2016
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-016-0639-1

Other articles of this Issue 1/2016

BMC Pediatrics 1/2016 Go to the issue