Skip to main content
Top
Published in: BMC Cancer 1/2022

Open Access 01-12-2022 | Salivary Gland Cancer | Research

The expression profiles of CD47 in the tumor microenvironment of salivary gland cancers: a next step in histology-driven immunotherapy

Authors: Michal Votava, Robin Bartolini, Linda Capkova, Jitka Smetanova, Vachtenheim Jiri Jr, Martin Kuchar, David Kalfert, Jan Plzak, Jirina Bartunkova, Zuzana Strizova

Published in: BMC Cancer | Issue 1/2022

Login to get access

Abstract

Background

Salivary gland carcinomas (SGC) are extremely rare malignancies with only limited treatment options for the metastatic phase of the disease. Treatment with anti-CD47 antibodies could represent a potent therapy for SGCs by promoting the phagocytic clearance of tumor cells through various mechanisms. However, the efficacy of anti-CD47 therapy is largely dependent on the expression of CD47 within the tumor microenvironment (TME).

Materials and Methods

In 43 patients with SGC, we were the first to investigate the CD47 expression in both tumor cells and tumor-infiltrating immune cells (TIIC) in the center and periphery of primary tumors. We also correlated the data with the clinicopathological variables of the patients and offered novel insights into the potential effectiveness of anti-CD47 therapy in SGCs.

Results

We observed that the CD47+ tumor cells are outnumbered by CD47+ TIICs in mucoepidermoid carcinoma. In the tumor center, the proportion of CD47+ tumor cells was comparable to the proportion of CD47+ TIICs in most histological subtypes. In low-grade tumors, significantly higher expression of CD47 was observed in TIICs in the periphery of the tumor as compared to the center of the tumor.

Conclusion

The reason for a high expression of ‘don’t eat me’ signals in TIICs in the tumor periphery is unclear. However, we hypothesize that in the tumor periphery, upregulation of CD47 in TIICs could be a mechanism to protect newly recruited leukocytes from macrophage-mediated phagocytosis, while also allowing the removal of old or exhausted leukocytes in the tumor center.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang W, Huang Q, Xiao W, et al. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front Immunol. 2020;11(18). Zhang W, Huang Q, Xiao W, et al. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front Immunol. 2020;11(18).
2.
go back to reference Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE, Chumakov SP. CD47 receptor as a primary target for cancer therapy. Mol Biol. 2017;51(2):251–61.CrossRef Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE, Chumakov SP. CD47 receptor as a primary target for cancer therapy. Mol Biol. 2017;51(2):251–61.CrossRef
3.
go back to reference Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6(6):457–64.PubMedCrossRef Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006;6(6):457–64.PubMedCrossRef
4.
go back to reference Ishikawa-Sekigami T, Kaneko Y, Saito Y, et al. Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1. Biochem Biophys Res Commun. 2006;343(4):1197–200.PubMedCrossRef Ishikawa-Sekigami T, Kaneko Y, Saito Y, et al. Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1. Biochem Biophys Res Commun. 2006;343(4):1197–200.PubMedCrossRef
5.
go back to reference Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47–SIRPα signalling system: its physiological roles and therapeutic application. J Biochem. 2014;155(6):335–44.PubMedCrossRef Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47–SIRPα signalling system: its physiological roles and therapeutic application. J Biochem. 2014;155(6):335–44.PubMedCrossRef
6.
go back to reference Catalán R, Orozco-Morales M, Hernández-Pedro NY, et al. CD47-SIRP<i>α</i> Axis as a Biomarker and Therapeutic Target in Cancer: Current Perspectives and Future Challenges in Nonsmall Cell Lung Cancer. J Immunol Res. 2020;2020:9435030.PubMedPubMedCentralCrossRef Catalán R, Orozco-Morales M, Hernández-Pedro NY, et al. CD47-SIRP<i>α</i> Axis as a Biomarker and Therapeutic Target in Cancer: Current Perspectives and Future Challenges in Nonsmall Cell Lung Cancer. J Immunol Res. 2020;2020:9435030.PubMedPubMedCentralCrossRef
7.
go back to reference Sosale NG, Rouhiparkouhi T, Bradshaw AM, Dimova R, Lipowsky R, Discher DE. Cell rigidity and shape override CD47’s “self”-signaling in phagocytosis by hyperactivating myosin-II. Blood. 2015;125(3):542–52.PubMedPubMedCentralCrossRef Sosale NG, Rouhiparkouhi T, Bradshaw AM, Dimova R, Lipowsky R, Discher DE. Cell rigidity and shape override CD47’s “self”-signaling in phagocytosis by hyperactivating myosin-II. Blood. 2015;125(3):542–52.PubMedPubMedCentralCrossRef
8.
go back to reference Willingham SB, Volkmer J-P, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci. 2012;109(17):6662–7.PubMedPubMedCentralCrossRef Willingham SB, Volkmer J-P, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci. 2012;109(17):6662–7.PubMedPubMedCentralCrossRef
9.
go back to reference Russ A, Hua AB, Montfort WR, et al. Blocking “don't eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9.PubMedPubMedCentralCrossRef Russ A, Hua AB, Montfort WR, et al. Blocking “don't eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9.PubMedPubMedCentralCrossRef
10.
go back to reference Edris B, Weiskopf K, Volkmer AK, et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci. 2012;109(17):6656–61.PubMedPubMedCentralCrossRef Edris B, Weiskopf K, Volkmer AK, et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci. 2012;109(17):6656–61.PubMedPubMedCentralCrossRef
11.
go back to reference Wu L, Yu G-T, Deng W-W, et al. Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. OncoImmunology. 2018;7(4):e1397248.PubMedPubMedCentralCrossRef Wu L, Yu G-T, Deng W-W, et al. Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. OncoImmunology. 2018;7(4):e1397248.PubMedPubMedCentralCrossRef
12.
go back to reference Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.PubMedCrossRef Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.PubMedCrossRef
13.
go back to reference Wang H, Tan M, Zhang S, et al. Expression and Significance of CD44, CD47 and c-met in Ovarian Clear Cell Carcinoma. Int J Mol Sci. 2015;16(2):3391–404.PubMedPubMedCentralCrossRef Wang H, Tan M, Zhang S, et al. Expression and Significance of CD44, CD47 and c-met in Ovarian Clear Cell Carcinoma. Int J Mol Sci. 2015;16(2):3391–404.PubMedPubMedCentralCrossRef
14.
go back to reference Chao MP, Weissman IL, Majeti R. The CD47–SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24(2):225–32.PubMedPubMedCentralCrossRef Chao MP, Weissman IL, Majeti R. The CD47–SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24(2):225–32.PubMedPubMedCentralCrossRef
15.
go back to reference Kim MJ, Lee JC, Lee JJ, et al. Association of CD47 with Natural Killer Cell-Mediated Cytotoxicity of Head-and-Neck Squamous Cell Carcinoma Lines. Tumor Biol. 2008;29(1):28–34.CrossRef Kim MJ, Lee JC, Lee JJ, et al. Association of CD47 with Natural Killer Cell-Mediated Cytotoxicity of Head-and-Neck Squamous Cell Carcinoma Lines. Tumor Biol. 2008;29(1):28–34.CrossRef
16.
go back to reference Saumet A, Slimane MB, Lanotte M, Lawler J, Vr D. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells. Blood. 2005;106(2):658–67.PubMedCrossRef Saumet A, Slimane MB, Lanotte M, Lawler J, Vr D. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells. Blood. 2005;106(2):658–67.PubMedCrossRef
17.
go back to reference Tseng D, Volkmer J-P, Willingham SB, et al. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci. 2013;110(27):11103–8.PubMedPubMedCentralCrossRef Tseng D, Volkmer J-P, Willingham SB, et al. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci. 2013;110(27):11103–8.PubMedPubMedCentralCrossRef
18.
go back to reference Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47. Sci Transl Med. 2010;2(63):63ra94.PubMedPubMedCentralCrossRef Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47. Sci Transl Med. 2010;2(63):63ra94.PubMedPubMedCentralCrossRef
19.
go back to reference Weiskopf K, Jahchan NS, Schnorr PJ, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest. 2016;126(7):2610–20.PubMedPubMedCentralCrossRef Weiskopf K, Jahchan NS, Schnorr PJ, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest. 2016;126(7):2610–20.PubMedPubMedCentralCrossRef
20.
go back to reference Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.PubMedPubMedCentralCrossRef Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Kong F, Gao F, Li H, et al. CD47: a potential immunotherapy target for eliminating cancer cells. Clin Transl Oncol. 2016;18(11):1051–5.PubMedCrossRef Kong F, Gao F, Li H, et al. CD47: a potential immunotherapy target for eliminating cancer cells. Clin Transl Oncol. 2016;18(11):1051–5.PubMedCrossRef
23.
go back to reference Puro RJ, Bouchlaka MN, Hiebsch RR, et al. Development of AO-176, a Next-Generation Humanized Anti-CD47 Antibody with Novel Anticancer Properties and Negligible Red Blood Cell Binding. Mol Cancer Ther. 2020;19(3):835–46.PubMedCrossRef Puro RJ, Bouchlaka MN, Hiebsch RR, et al. Development of AO-176, a Next-Generation Humanized Anti-CD47 Antibody with Novel Anticancer Properties and Negligible Red Blood Cell Binding. Mol Cancer Ther. 2020;19(3):835–46.PubMedCrossRef
24.
go back to reference Strizova Z, Vachtenheim J Jr, Snajdauf M, Lischke R, Bartunkova J, Smrz D. Tumoral and paratumoral NK cells and CD8(+) T cells of esophageal carcinoma patients express high levels of CD47. Sci Rep. 2020;10(1):13936.PubMedPubMedCentralCrossRef Strizova Z, Vachtenheim J Jr, Snajdauf M, Lischke R, Bartunkova J, Smrz D. Tumoral and paratumoral NK cells and CD8(+) T cells of esophageal carcinoma patients express high levels of CD47. Sci Rep. 2020;10(1):13936.PubMedPubMedCentralCrossRef
25.
go back to reference Lin F, Xiong M, Hao W, et al. A Novel Blockade CD47 Antibody With Therapeutic Potential for Cancer. Front Oncol. 2020;10:615534.PubMedCrossRef Lin F, Xiong M, Hao W, et al. A Novel Blockade CD47 Antibody With Therapeutic Potential for Cancer. Front Oncol. 2020;10:615534.PubMedCrossRef
27.
go back to reference Niwa K, Kawakita D, Nagao T, et al. Multicentre, retrospective study of the efficacy and safety of nivolumab for recurrent and metastatic salivary gland carcinoma. Sci Rep. 2020;10(1):16988.PubMedPubMedCentralCrossRef Niwa K, Kawakita D, Nagao T, et al. Multicentre, retrospective study of the efficacy and safety of nivolumab for recurrent and metastatic salivary gland carcinoma. Sci Rep. 2020;10(1):16988.PubMedPubMedCentralCrossRef
28.
go back to reference Di Villeneuve L, Souza IL, Tolentino FDS, Ferrarotto R, Schvartsman G. Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Front Oncol. 2020;10(2097). Di Villeneuve L, Souza IL, Tolentino FDS, Ferrarotto R, Schvartsman G. Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Front Oncol. 2020;10(2097).
29.
go back to reference Cohen RB, Delord JP, Doi T, et al. Pembrolizumab for the Treatment of Advanced Salivary Gland Carcinoma: Findings of the Phase 1b KEYNOTE-028 Study. Am J Clin Oncol. 2018;41(11):1083–8.PubMedPubMedCentralCrossRef Cohen RB, Delord JP, Doi T, et al. Pembrolizumab for the Treatment of Advanced Salivary Gland Carcinoma: Findings of the Phase 1b KEYNOTE-028 Study. Am J Clin Oncol. 2018;41(11):1083–8.PubMedPubMedCentralCrossRef
30.
go back to reference Takahashi H, Tada Y, Saotome T, et al. Phase II Trial of Trastuzumab and Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2-Positive Salivary Duct Carcinoma. J Clin Oncol. 2019;37(2):125–34.PubMedCrossRef Takahashi H, Tada Y, Saotome T, et al. Phase II Trial of Trastuzumab and Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2-Positive Salivary Duct Carcinoma. J Clin Oncol. 2019;37(2):125–34.PubMedCrossRef
31.
go back to reference O'Kane G, Lynch M, Hooper S, et al. Zonal differences in PD-1 expression in centre of tumour versus periphery in microsatellite stable and unstable colorectal cancer. J Clin Oncol. 2015;33(15_suppl):3574.CrossRef O'Kane G, Lynch M, Hooper S, et al. Zonal differences in PD-1 expression in centre of tumour versus periphery in microsatellite stable and unstable colorectal cancer. J Clin Oncol. 2015;33(15_suppl):3574.CrossRef
32.
go back to reference Strizova Z, Kuchar M, Capkova L, et al. Fas-Fas Ligand Interplay in the Periphery of Salivary Gland Carcinomas as a New Checkpoint Predictor for Disease Severity and Immunotherapy Response. Biomedicines. 2021;9(4). Strizova Z, Kuchar M, Capkova L, et al. Fas-Fas Ligand Interplay in the Periphery of Salivary Gland Carcinomas as a New Checkpoint Predictor for Disease Severity and Immunotherapy Response. Biomedicines. 2021;9(4).
33.
go back to reference Ferrata M, Schad A, Zimmer S, et al. PD-L1 Expression and Immune Cell Infiltration in Gastroenteropancreatic (GEP) and Non-GEP Neuroendocrine Neoplasms With High Proliferative Activity. Front Oncol. 2019;9. Ferrata M, Schad A, Zimmer S, et al. PD-L1 Expression and Immune Cell Infiltration in Gastroenteropancreatic (GEP) and Non-GEP Neuroendocrine Neoplasms With High Proliferative Activity. Front Oncol. 2019;9.
34.
go back to reference Phillips T, Simmons P, Inzunza HD, et al. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl Immunohistochem Mol Morphol. 2015;23(8):541–9.PubMedPubMedCentralCrossRef Phillips T, Simmons P, Inzunza HD, et al. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl Immunohistochem Mol Morphol. 2015;23(8):541–9.PubMedPubMedCentralCrossRef
35.
go back to reference Igarashi T, Teramoto K, Ishida M, Hanaoka J, Daigo Y. Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open. 2016;1(4):e000083.PubMedPubMedCentralCrossRef Igarashi T, Teramoto K, Ishida M, Hanaoka J, Daigo Y. Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open. 2016;1(4):e000083.PubMedPubMedCentralCrossRef
36.
go back to reference Cedrés S, Ponce-Aix S, Zugazagoitia J, et al. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS One. 2015;10(3):e0121071.PubMedPubMedCentralCrossRef Cedrés S, Ponce-Aix S, Zugazagoitia J, et al. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS One. 2015;10(3):e0121071.PubMedPubMedCentralCrossRef
37.
go back to reference Hendry S, Salgado R, Gevaert T, et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol. 2017;24(6):311–35.PubMedPubMedCentralCrossRef Hendry S, Salgado R, Gevaert T, et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol. 2017;24(6):311–35.PubMedPubMedCentralCrossRef
38.
go back to reference Kuchar M, Strizova Z, Capkova L, et al. The Periphery of Salivary Gland Carcinoma Tumors Reveals a PD-L1/PD-1 Biomarker Niche for the Evaluation of Disease Severity and Tumor-Immune System Interplay. Biomedicines. 2021;9(2). Kuchar M, Strizova Z, Capkova L, et al. The Periphery of Salivary Gland Carcinoma Tumors Reveals a PD-L1/PD-1 Biomarker Niche for the Evaluation of Disease Severity and Tumor-Immune System Interplay. Biomedicines. 2021;9(2).
39.
go back to reference Spiro RH, Thaler HT, Hicks WF, Kher UA, Huvos AH, Strong EW. The importance of clinical staging of minor salivary gland carcinoma. Am J Surg. 1991;162(4):330–6.PubMedCrossRef Spiro RH, Thaler HT, Hicks WF, Kher UA, Huvos AH, Strong EW. The importance of clinical staging of minor salivary gland carcinoma. Am J Surg. 1991;162(4):330–6.PubMedCrossRef
40.
go back to reference Wang X, Luo Y, Li M, Yan H, Sun M, Fan T. Management of salivary gland carcinomas - a review. Oncotarget. 2017;8(3):3946–56.PubMedCrossRef Wang X, Luo Y, Li M, Yan H, Sun M, Fan T. Management of salivary gland carcinomas - a review. Oncotarget. 2017;8(3):3946–56.PubMedCrossRef
41.
go back to reference Kordzińska-Cisek I, Cisek P, Grzybowska-Szatkowska L. The Role of Prognostic Factors in Salivary Gland Tumors Treated by Surgery and Adjuvant Radio- or Chemoradiotherapy - A Single Institution Experience. Cancer Manag Res. 2020;12:1047–67.PubMedPubMedCentralCrossRef Kordzińska-Cisek I, Cisek P, Grzybowska-Szatkowska L. The Role of Prognostic Factors in Salivary Gland Tumors Treated by Surgery and Adjuvant Radio- or Chemoradiotherapy - A Single Institution Experience. Cancer Manag Res. 2020;12:1047–67.PubMedPubMedCentralCrossRef
42.
go back to reference Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB. Radiotherapy alone or combined with surgery for salivary gland carcinoma. Cancer. 2005;103(12):2544–50.PubMedCrossRef Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB. Radiotherapy alone or combined with surgery for salivary gland carcinoma. Cancer. 2005;103(12):2544–50.PubMedCrossRef
43.
go back to reference Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.PubMedCrossRef Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.PubMedCrossRef
44.
go back to reference Katz D, Palmerini E, Pollack SM. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. Am Soc Clin Oncol Educ Book. 2018;38:925–38.PubMedCrossRef Katz D, Palmerini E, Pollack SM. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. Am Soc Clin Oncol Educ Book. 2018;38:925–38.PubMedCrossRef
45.
go back to reference Alame M, Cornillot E, Cacheux V, et al. The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics. 2020;10(10):4383–94.PubMedPubMedCentralCrossRef Alame M, Cornillot E, Cacheux V, et al. The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics. 2020;10(10):4383–94.PubMedPubMedCentralCrossRef
46.
go back to reference Soto-Pantoja DR, Terabe M, Ghosh A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014;74(23):6771–83.PubMedPubMedCentralCrossRef Soto-Pantoja DR, Terabe M, Ghosh A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014;74(23):6771–83.PubMedPubMedCentralCrossRef
47.
go back to reference Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunol Res. 2019;7(9):1547–61.PubMedPubMedCentralCrossRef Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunol Res. 2019;7(9):1547–61.PubMedPubMedCentralCrossRef
Metadata
Title
The expression profiles of CD47 in the tumor microenvironment of salivary gland cancers: a next step in histology-driven immunotherapy
Authors
Michal Votava
Robin Bartolini
Linda Capkova
Jitka Smetanova
Vachtenheim Jiri Jr
Martin Kuchar
David Kalfert
Jan Plzak
Jirina Bartunkova
Zuzana Strizova
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2022
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-10114-4

Other articles of this Issue 1/2022

BMC Cancer 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine