Skip to main content
Top
Published in: Cancer Cell International 1/2018

Open Access 01-12-2018 | Primary research

S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs

Authors: Concetta Paola Ilisso, Donatella Delle Cave, Laura Mosca, Martina Pagano, Alessandra Coppola, Luigi Mele, Michele Caraglia, Giovanna Cacciapuoti, Marina Porcelli

Published in: Cancer Cell International | Issue 1/2018

Login to get access

Abstract

Background

To get insight into the molecular mechanisms underlying the anti-tumor activity of S-adenosyl-l-methionine (AdoMet), we analyzed AdoMet-induced modulation of microRNAs (miRNAs) expression profile in MCF-7 breast cell line and its correlation with cancer-related biological pathways.

Methods

MiRNA expression profiling was performed using a TaqMan MiRNA Array, following 500 µM AdoMet-treatment. The results were confirmed by Quantitative real-time PCR analysis. MCF-7 were transfected with miR-34a, miR-34c and miR-486-5p, mimics and inhibitors in presence or not of 500 µM AdoMet for 72 h. Apoptosis and autophagy were analyzed by flow cytometry and the modulation of the main antiproliferative signaling pathways were evaluated by Western blotting. The potential mRNA targets for each miRNA were identified by the TargetScan miRNA target prediction software.

Results

Twenty-eight microRNAs resulted differentially expressed in AdoMet-treated MCF-7 cells compared to control cells. Among them, miRNA-34a and miRNA-34c were up-regulated while miRNA-486-5p was down-regulated. Moreover, we confirmed the ability of AdoMet to regulate these miRNAs in MDA-MB 231 breast cancer cell line. We demonstrate that, in MCF7 cells, the combination of either miR-34a or miR-34c mimic with AdoMet greatly potentiated the pro-apoptotic effect of AdoMet, by a caspase-dependent mechanism and activates p53 acetylation by inhibiting SIRT1 and HDAC1 expression. We also showed that miR-486-5p inhibitor induces autophagy and enhances AdoMet-induced autophagic process by increasing PTEN expression and by inhibiting AKT signaling.

Conclusions

Our findings provide the first evidence that AdoMet can regulate miRNA expression in MCF-7 increasing our knowledge on the molecular basis of the antitumor effect of the sulfonium compound and suggest the use of AdoMet as an attractive miRNA-mediated chemopreventive and therapeutic strategy in breast cancer.
Literature
2.
3.
go back to reference Fontecave M, Atta M, Mulliez E. S-Adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29:243–9.CrossRefPubMed Fontecave M, Atta M, Mulliez E. S-Adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29:243–9.CrossRefPubMed
4.
go back to reference Pajares MA, Markham GD. Methionine adenosyltransferase (S-Adenosylmethionine-synthetase). Adv Enzymol Relat Areas Mol Biol. 2011;78:449–52.CrossRefPubMed Pajares MA, Markham GD. Methionine adenosyltransferase (S-Adenosylmethionine-synthetase). Adv Enzymol Relat Areas Mol Biol. 2011;78:449–52.CrossRefPubMed
5.
go back to reference Porcelli M, Ilisso CP, Mosca L, Cacciapuoti G. A thermostable archaeal S-adenosylmethionine synthetase: a promising tool to improve the synthesis of adenosylmethionine analogs of biotechnological interest. Bioengineered. 2015;6(3):184–6.CrossRefPubMedPubMedCentral Porcelli M, Ilisso CP, Mosca L, Cacciapuoti G. A thermostable archaeal S-adenosylmethionine synthetase: a promising tool to improve the synthesis of adenosylmethionine analogs of biotechnological interest. Bioengineered. 2015;6(3):184–6.CrossRefPubMedPubMedCentral
6.
go back to reference Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the Archaeon Pyrococcus Furiosus with high catalytic power. Appl Biochem Biotechnol. 2015;175(6):2916–33.CrossRefPubMed Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the Archaeon Pyrococcus Furiosus with high catalytic power. Appl Biochem Biotechnol. 2015;175(6):2916–33.CrossRefPubMed
7.
go back to reference Kotb M, Geller AM. Methionine adenosyltransferase: structure and function. Pharmacol Ther. 1993;59:125–43.CrossRefPubMed Kotb M, Geller AM. Methionine adenosyltransferase: structure and function. Pharmacol Ther. 1993;59:125–43.CrossRefPubMed
8.
go back to reference Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;1:S73–7.CrossRef Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;1:S73–7.CrossRef
9.
go back to reference Luo J, Li YN, Wang F, Zhang WM, Geng X. S-Adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci. 2010;6(7):784–95.CrossRefPubMedPubMedCentral Luo J, Li YN, Wang F, Zhang WM, Geng X. S-Adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci. 2010;6(7):784–95.CrossRefPubMedPubMedCentral
10.
go back to reference Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol. 2013;59(4):830–41.CrossRefPubMed Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol. 2013;59(4):830–41.CrossRefPubMed
11.
go back to reference Ilisso CP, Sapio L, Delle Cave D, Illiano M, Spina A, Cacciapuoti G, Naviglio S, Porcelli M. S-Adenosylmethionine affects ERK1/2 and Stat3 pathways and induces apoptosis in osteosarcoma cells. J Cell Physiol. 2016;231(2):428–35.CrossRefPubMed Ilisso CP, Sapio L, Delle Cave D, Illiano M, Spina A, Cacciapuoti G, Naviglio S, Porcelli M. S-Adenosylmethionine affects ERK1/2 and Stat3 pathways and induces apoptosis in osteosarcoma cells. J Cell Physiol. 2016;231(2):428–35.CrossRefPubMed
12.
go back to reference Delle Cave D, Desiderio V, Mosca L, Ilisso CP, Mele L, Caraglia M, Cacciapuoti G, Porcelli M. S-Adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. J Cell Physiol. 2018;233:1370–83.CrossRef Delle Cave D, Desiderio V, Mosca L, Ilisso CP, Mele L, Caraglia M, Cacciapuoti G, Porcelli M. S-Adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. J Cell Physiol. 2018;233:1370–83.CrossRef
13.
go back to reference Delle Cave D, Ilisso CP, Mosca L, Pagano M, Martino E, Porcelli M, Cacciapuoti G. The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chem. 2017;5(3):1049. Delle Cave D, Ilisso CP, Mosca L, Pagano M, Martino E, Porcelli M, Cacciapuoti G. The anticancer effects of S-adenosylmethionine on breast cancer cells. JSM Chem. 2017;5(3):1049.
14.
go back to reference Ilisso CP, Castellano M, Zappavigna S, Lombardi A, Vitale G, Dicitore A, Cacciapuoti G, Caraglia M, Porcelli M. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine. 2015;50:212–22.CrossRefPubMed Ilisso CP, Castellano M, Zappavigna S, Lombardi A, Vitale G, Dicitore A, Cacciapuoti G, Caraglia M, Porcelli M. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine. 2015;50:212–22.CrossRefPubMed
15.
go back to reference Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis. 2014;35(1):138–44.CrossRefPubMed Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis. 2014;35(1):138–44.CrossRefPubMed
16.
go back to reference Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J ClinInvest. 2012;123:285–98. Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J ClinInvest. 2012;123:285–98.
17.
go back to reference Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP. Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 2013;52(4):318–27.CrossRefPubMed Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP. Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog. 2013;52(4):318–27.CrossRefPubMed
18.
go back to reference Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE. 2013;8(9):e75628.CrossRefPubMedPubMedCentral Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE. 2013;8(9):e75628.CrossRefPubMedPubMedCentral
20.
go back to reference He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMed He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMed
21.
go back to reference Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236–40.PubMedPubMedCentral Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14(4):236–40.PubMedPubMedCentral
22.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)). Method Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)). Method Methods. 2001;25:402–8.CrossRefPubMed
23.
go back to reference Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelledAnnexin V. J Immunol Methods. 1995;184:39–51.CrossRefPubMed Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelledAnnexin V. J Immunol Methods. 1995;184:39–51.CrossRefPubMed
24.
go back to reference Chikte S, Panchal N, Warnes G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A. 2014;85(2):169–78.CrossRefPubMed Chikte S, Panchal N, Warnes G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A. 2014;85(2):169–78.CrossRefPubMed
25.
go back to reference Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed
26.
go back to reference Dawson VL, Dawson TM. Deadly conversations: nuclear mitochondrial cross-talk. J Bioenerg Biomembr. 2004;36(4):287–94.CrossRefPubMed Dawson VL, Dawson TM. Deadly conversations: nuclear mitochondrial cross-talk. J Bioenerg Biomembr. 2004;36(4):287–94.CrossRefPubMed
27.
go back to reference Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev. 2005;25(3):261–309.CrossRefPubMed Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev. 2005;25(3):261–309.CrossRefPubMed
28.
go back to reference Cao LL, Song X, Pei L, Liu L, Wang H, Jia M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: a meta-analysis. Medicine. 2017;96(31):e7663.CrossRefPubMedPubMedCentral Cao LL, Song X, Pei L, Liu L, Wang H, Jia M. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: a meta-analysis. Medicine. 2017;96(31):e7663.CrossRefPubMedPubMedCentral
29.
go back to reference Kawai H, Li H, Avraham S, Jiang S, Avraham HK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor. Int J Cancer. 2003;107(3):353–8.CrossRefPubMed Kawai H, Li H, Avraham S, Jiang S, Avraham HK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor. Int J Cancer. 2003;107(3):353–8.CrossRefPubMed
30.
go back to reference Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408(6810):377–81.CrossRefPubMed Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408(6810):377–81.CrossRefPubMed
31.
go back to reference Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275(27):20436–43.CrossRefPubMed Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275(27):20436–43.CrossRefPubMed
32.
go back to reference Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194.CrossRefPubMed Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194.CrossRefPubMed
39.
go back to reference Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;7:839–49.CrossRef Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;7:839–49.CrossRef
42.
44.
go back to reference Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.CrossRefPubMedPubMedCentral Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.CrossRefPubMedPubMedCentral
46.
go back to reference Alabdulkareem H, Pinchinat T, Khan S, Landers A, Christos P, Simmons R, Moo TA. The impact of molecular subtype on breast cancer recurrence in young women treated with contemporary adjuvant therapy. Breast J. 2018;24(2):148–53.CrossRefPubMed Alabdulkareem H, Pinchinat T, Khan S, Landers A, Christos P, Simmons R, Moo TA. The impact of molecular subtype on breast cancer recurrence in young women treated with contemporary adjuvant therapy. Breast J. 2018;24(2):148–53.CrossRefPubMed
47.
go back to reference Wang Z, Zhou Z, Li W, Wang W, Xie X, Liu J, Song Y, Dang C, Zhang H. Treatment strategies and predicting prognoses in elderly patients with breast cancer. Cancer Manag Res. 2018;10:3207–18.CrossRefPubMedPubMedCentral Wang Z, Zhou Z, Li W, Wang W, Xie X, Liu J, Song Y, Dang C, Zhang H. Treatment strategies and predicting prognoses in elderly patients with breast cancer. Cancer Manag Res. 2018;10:3207–18.CrossRefPubMedPubMedCentral
48.
go back to reference Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014;16(5):446.CrossRefPubMedPubMedCentral Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014;16(5):446.CrossRefPubMedPubMedCentral
50.
go back to reference Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y. MiR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. 2010;127:2768–76.CrossRefPubMed Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y. MiR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. 2010;127:2768–76.CrossRefPubMed
51.
go back to reference Roy S, Levi E, Majumdar AP, Sarkar FH. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58.CrossRefPubMedPubMedCentral Roy S, Levi E, Majumdar AP, Sarkar FH. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58.CrossRefPubMedPubMedCentral
52.
go back to reference Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM. MiR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS ONE. 2013;8:e67581.CrossRefPubMedPubMedCentral Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM. MiR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS ONE. 2013;8:e67581.CrossRefPubMedPubMedCentral
53.
go back to reference Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008;6:735–42.CrossRefPubMedPubMedCentral Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008;6:735–42.CrossRefPubMedPubMedCentral
54.
go back to reference Javeri A, Ghaffarpour M, Taha MF, Houshmand M. Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med Oncol. 2013;30:413.CrossRefPubMed Javeri A, Ghaffarpour M, Taha MF, Houshmand M. Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med Oncol. 2013;30:413.CrossRefPubMed
55.
go back to reference Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–303.CrossRefPubMed Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–303.CrossRefPubMed
56.
57.
go back to reference Sun TY, Xie HJ, Li Z, Kong LF, Gou XN, Li DJ, Shi YJ, Ding YZ. MiR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9(1):103–14.PubMedPubMedCentral Sun TY, Xie HJ, Li Z, Kong LF, Gou XN, Li DJ, Shi YJ, Ding YZ. MiR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9(1):103–14.PubMedPubMedCentral
59.
go back to reference Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, and p53: the feedback loop. Cell Cycle. 2009;8(5):712–5.CrossRefPubMed Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, and p53: the feedback loop. Cell Cycle. 2009;8(5):712–5.CrossRefPubMed
61.
go back to reference Wang J, Tian X, Han R, Zhang X, Wang X, Shen H. Downregulation of miR-486–5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene. 2014;33(9):1181–9.CrossRefPubMed Wang J, Tian X, Han R, Zhang X, Wang X, Shen H. Downregulation of miR-486–5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene. 2014;33(9):1181–9.CrossRefPubMed
62.
go back to reference Li Y, Liang L, Zhang CY. Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis. Anal Chem. 2013;3(23):85. Li Y, Liang L, Zhang CY. Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis. Anal Chem. 2013;3(23):85.
63.
go back to reference Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci USA. 2013;110(37):15043–8.CrossRefPubMedPubMedCentral Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci USA. 2013;110(37):15043–8.CrossRefPubMedPubMedCentral
64.
go back to reference Chen H, Ren C, Han C, Wang D, Chen Y, Fu D. Expression and prognostic value of miR-486-5p in Patients with Gastric Adenocarcinoma. PLoS ONE. 2015;10(3):e0119384.CrossRefPubMedPubMedCentral Chen H, Ren C, Han C, Wang D, Chen Y, Fu D. Expression and prognostic value of miR-486-5p in Patients with Gastric Adenocarcinoma. PLoS ONE. 2015;10(3):e0119384.CrossRefPubMedPubMedCentral
65.
go back to reference Yi Y, Lu X, Chen J, Jiao C, Zhong J, Song Z, Yu X, Lin B. Downregulated miR-486-5p acts as a tumor suppressor in esophageal squamous cell carcinoma. Exp Ther Med. 2016;12(5):3411–6.CrossRefPubMedPubMedCentral Yi Y, Lu X, Chen J, Jiao C, Zhong J, Song Z, Yu X, Lin B. Downregulated miR-486-5p acts as a tumor suppressor in esophageal squamous cell carcinoma. Exp Ther Med. 2016;12(5):3411–6.CrossRefPubMedPubMedCentral
66.
go back to reference Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang S, Liu G, Qiu X, Zhang Q, Guo H, Chen H. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget. 2017;8(42):72835–46.PubMedPubMedCentral Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang S, Liu G, Qiu X, Zhang Q, Guo H, Chen H. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget. 2017;8(42):72835–46.PubMedPubMedCentral
67.
go back to reference Zhang G, Liu Z, Cui G, Wang X, Yang Z. MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells. Tumour Biol. 2014;35(11):11137–45.CrossRefPubMed Zhang G, Liu Z, Cui G, Wang X, Yang Z. MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells. Tumour Biol. 2014;35(11):11137–45.CrossRefPubMed
Metadata
Title
S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs
Authors
Concetta Paola Ilisso
Donatella Delle Cave
Laura Mosca
Martina Pagano
Alessandra Coppola
Luigi Mele
Michele Caraglia
Giovanna Cacciapuoti
Marina Porcelli
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2018
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0697-6

Other articles of this Issue 1/2018

Cancer Cell International 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine