Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2012

Open Access 01-12-2012 | Research

Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF

Authors: Sanchita Roy, Edi Levi, Adhip PN Majumdar, Fazlul H Sarkar

Published in: Journal of Hematology & Oncology | Issue 1/2012

Login to get access

Abstract

Background

Colorectal Cancer (CRC) is one of the leading causes of death worldwide. Numerous cellular events, including deregulated expression of microRNAs (miRNAs), specifically the family of miR-34 consisting of miR-34a, b and c, is known to regulate the processes of growth and metastasis.

Methods

We evaluated the expression of miR-34 in formalin-fixed paraffin-embedded (FFPE) human colon cancer tissue specimens compared to normal colonic mucosa. Moreover, we also assessed the expression of miR-34 in colon cancer cell lines treated with our newly developed synthetic analogue of curcumin referred as difluorinated curcumin (CDF) compared to well known inhibitor of methyl transferase.

Results

We found that the expression of miR-34a and miR-34c was down-regulated in colon cancer specimens compared to normal colonic mucosa and the loss of expression was also consistent with data from colon cancer cell lines. This down-regulation was attributed to promoter hypermethylation, because we found that the treatment of colon cancer cells with 5-aza-2´-deoxycytidine, a methyltransferase inhibitor, markedly induced the levels of miR-34a and miR-34c expression. Likewise, CDF was very effective in the re-expression of miR-34a and miR-34c, which was consistent with inhibition of cell growth of both chemo-sensitive and chemo-resistant colon cancer cells. The re-expression of miR-34 led to a marked reduction in the expression of its target gene, Notch-1.

Conclusion

The loss of expression of miR-34 in colon cancer is in part due to promoter hypermethylation of miR-34, which can be re-expressed with our novel agent CDF, suggesting that CDF could be a novel demethylating agent for restoring the expression of miR-34 family, and thus CDF could become a newer therapeutic agent for the treatment of colon cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62: 10-29. 10.3322/caac.20138.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62: 10-29. 10.3322/caac.20138.CrossRefPubMed
3.
go back to reference Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 2005, 5: 275-284. 10.1038/nrc1590.CrossRefPubMed Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 2005, 5: 275-284. 10.1038/nrc1590.CrossRefPubMed
4.
go back to reference Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.CrossRefPubMed Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.CrossRefPubMed
5.
go back to reference Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.CrossRefPubMed Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.CrossRefPubMed
6.
go back to reference Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.CrossRefPubMed Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.CrossRefPubMed
8.
go back to reference Todaro M, Francipane MG, Medema JP, Stassi G: Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010, 138: 2151-2162. 10.1053/j.gastro.2009.12.063.CrossRefPubMed Todaro M, Francipane MG, Medema JP, Stassi G: Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010, 138: 2151-2162. 10.1053/j.gastro.2009.12.063.CrossRefPubMed
9.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17: 211-215. 10.1038/nm.2284.PubMedCentralCrossRefPubMed Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17: 211-215. 10.1038/nm.2284.PubMedCentralCrossRefPubMed
10.
go back to reference Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007, 104: 15472-15477. 10.1073/pnas.0707351104.PubMedCentralCrossRefPubMed Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007, 104: 15472-15477. 10.1073/pnas.0707351104.PubMedCentralCrossRefPubMed
11.
go back to reference Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 2011, 300: 197-204. 10.1016/j.canlet.2010.10.006.CrossRefPubMed Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 2011, 300: 197-204. 10.1016/j.canlet.2010.10.006.CrossRefPubMed
12.
go back to reference Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007, 67: 8433-8438. 10.1158/0008-5472.CAN-07-1585.CrossRefPubMed Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007, 67: 8433-8438. 10.1158/0008-5472.CAN-07-1585.CrossRefPubMed
13.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010.PubMedCentralCrossRefPubMed Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010.PubMedCentralCrossRefPubMed
14.
go back to reference Yamakuchi M, Lowenstein CJ: MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009, 8: 712-715. 10.4161/cc.8.5.7753.CrossRefPubMed Yamakuchi M, Lowenstein CJ: MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009, 8: 712-715. 10.4161/cc.8.5.7753.CrossRefPubMed
15.
go back to reference Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008, 105: 13421-13426. 10.1073/pnas.0801613105.PubMedCentralCrossRefPubMed Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008, 105: 13421-13426. 10.1073/pnas.0801613105.PubMedCentralCrossRefPubMed
16.
go back to reference Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A: MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008, 68: 10128-10136. 10.1158/0008-5472.CAN-08-2148.CrossRefPubMed Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A: MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008, 68: 10128-10136. 10.1158/0008-5472.CAN-08-2148.CrossRefPubMed
17.
go back to reference Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed
18.
go back to reference Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K: New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res. 2009, 26: 1874-1880. 10.1007/s11095-009-9900-8.PubMedCentralCrossRefPubMed Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K: New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res. 2009, 26: 1874-1880. 10.1007/s11095-009-9900-8.PubMedCentralCrossRefPubMed
19.
go back to reference Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S: Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res. 2009, 26: 2438-2445. 10.1007/s11095-009-9955-6.PubMedCentralCrossRefPubMed Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S: Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res. 2009, 26: 2438-2445. 10.1007/s11095-009-9955-6.PubMedCentralCrossRefPubMed
20.
go back to reference Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70: 3606-3617. 10.1158/0008-5472.CAN-09-4598.PubMedCentralCrossRefPubMed Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70: 3606-3617. 10.1158/0008-5472.CAN-09-4598.PubMedCentralCrossRefPubMed
21.
go back to reference Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 2012, 319: 173-181. 10.1016/j.canlet.2012.01.013.PubMedCentralCrossRefPubMed Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 2012, 319: 173-181. 10.1016/j.canlet.2012.01.013.PubMedCentralCrossRefPubMed
22.
go back to reference Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011, 6: e17850-10.1371/journal.pone.0017850.PubMedCentralCrossRefPubMed Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011, 6: e17850-10.1371/journal.pone.0017850.PubMedCentralCrossRefPubMed
23.
go back to reference Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012, 72: 335-345. 10.1158/0008-5472.CAN-11-2182.PubMedCentralCrossRefPubMed Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012, 72: 335-345. 10.1158/0008-5472.CAN-11-2182.PubMedCentralCrossRefPubMed
24.
go back to reference Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH: Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res. 2011, 28: 827-838. 10.1007/s11095-010-0336-y.PubMedCentralCrossRefPubMed Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH: Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res. 2011, 28: 827-838. 10.1007/s11095-010-0336-y.PubMedCentralCrossRefPubMed
25.
go back to reference Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar AP: The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010, 9: 212-10.1186/1476-4598-9-212.PubMedCentralCrossRefPubMed Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar AP: The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 2010, 9: 212-10.1186/1476-4598-9-212.PubMedCentralCrossRefPubMed
26.
go back to reference Yu Y, Kanwar SS, Patel BB, Nautiyal J, Sarkar FH, Majumdar AP: Elimination of Colon Cancer Stem-Like Cells by the Combination of Curcumin and FOLFOX. Transl Oncol. 2009, 2: 321-328.PubMedCentralCrossRefPubMed Yu Y, Kanwar SS, Patel BB, Nautiyal J, Sarkar FH, Majumdar AP: Elimination of Colon Cancer Stem-Like Cells by the Combination of Curcumin and FOLFOX. Transl Oncol. 2009, 2: 321-328.PubMedCentralCrossRefPubMed
27.
go back to reference Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis. 2012, 33: 68-76. 10.1093/carcin/bgr246.PubMedCentralCrossRefPubMed Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis. 2012, 33: 68-76. 10.1093/carcin/bgr246.PubMedCentralCrossRefPubMed
28.
go back to reference Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008, 7: 2591-2600. 10.4161/cc.7.16.6533.CrossRefPubMed Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008, 7: 2591-2600. 10.4161/cc.7.16.6533.CrossRefPubMed
29.
go back to reference Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L: Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res. 2012, 4: 14-23.PubMedCentralPubMed Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L: Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res. 2012, 4: 14-23.PubMedCentralPubMed
30.
go back to reference Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D: MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838. 10.1038/nature03702.CrossRefPubMed Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D: MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838. 10.1038/nature03702.CrossRefPubMed
31.
go back to reference Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 2011, 458: 313-322. 10.1007/s00428-010-1030-5.CrossRefPubMed Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 2011, 458: 313-322. 10.1007/s00428-010-1030-5.CrossRefPubMed
32.
go back to reference Cowan LA, Talwar S, Yang AS: Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics. 2010, 2: 71-86. 10.2217/epi.09.44.CrossRefPubMed Cowan LA, Talwar S, Yang AS: Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics. 2010, 2: 71-86. 10.2217/epi.09.44.CrossRefPubMed
33.
go back to reference Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010, 17: 193-199. 10.1038/cdd.2009.56.CrossRefPubMed Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010, 17: 193-199. 10.1038/cdd.2009.56.CrossRefPubMed
34.
go back to reference Fearon ER: Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011, 6: 479-507. 10.1146/annurev-pathol-011110-130235.CrossRefPubMed Fearon ER: Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011, 6: 479-507. 10.1146/annurev-pathol-011110-130235.CrossRefPubMed
35.
go back to reference Wu W, Sun M, Zou GM, Chen J: MicroRNA and cancer: Current status and prospective. Int J Cancer. 2007, 120: 953-960.CrossRefPubMed Wu W, Sun M, Zou GM, Chen J: MicroRNA and cancer: Current status and prospective. Int J Cancer. 2007, 120: 953-960.CrossRefPubMed
36.
go back to reference Jordan CT, Guzman ML, Noble M: Cancer stem cells. N Engl J Med. 2006, 355: 1253-1261. 10.1056/NEJMra061808.CrossRefPubMed Jordan CT, Guzman ML, Noble M: Cancer stem cells. N Engl J Med. 2006, 355: 1253-1261. 10.1056/NEJMra061808.CrossRefPubMed
Metadata
Title
Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF
Authors
Sanchita Roy
Edi Levi
Adhip PN Majumdar
Fazlul H Sarkar
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2012
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-5-58

Other articles of this Issue 1/2012

Journal of Hematology & Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine