Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 2/2018

01-03-2018 | Original Article

Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice

Authors: Yukinori Tamura, Naoyuki Kawao, Takeshi Shimoide, Kiyotaka Okada, Osamu Matsuo, Hiroshi Kaji

Published in: Journal of Bone and Mineral Metabolism | Issue 2/2018

Login to get access

Abstract

We recently revealed that plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is involved in diabetes, osteoporosis and muscle wasting induced by glucocorticoid (GC) treatment in mice. In the present study, we investigated the detailed mechanisms by which GC induces muscle wasting through PAI-1 in vivo and in vitro. PAI-1 deficiency suppressed the mRNA levels of atrogin1 and muscle RING-Finger Protein 1 (MuRF1), ubiquitin ligases leading to muscle degradation, elevated by GC treatment in the gastrocnemius muscle of mice. In vitro study revealed that active PAI-1 treatment augmented the increase in atrogin1 mRNA levels enhanced by dexamethasone (Dex) in mouse myoblastic C2C12 cells. Moreover, a reduction in endogenous PAI-1 level by siRNA suppressed the mRNA levels of atrogin1 and MuRF1 enhanced by Dex in C2C12 cells. In contrast, a reduction in endogenous PAI-1 levels and active PAI-1 did not affect the phosphorylations of Akt and p70S6 kinase nor myogenic differentiation with or without Dex in C2C12 cells. In addition, PAI-1 deficiency blunted IGF-1 mRNA levels decreased by GC treatment in the gastrocnemius muscle of mice, although neither active PAI-1 nor a reduction in endogenous PAI-1 levels affected the levels of IGF-1 mRNA in C2C12 cells in the presence of Dex. In conclusion, our data suggest that paracrine PAI-1 is involved in GC-induced muscle wasting through the enhancement of muscle degradation in mice.
Literature
1.
go back to reference Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353:1711–1723CrossRef Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353:1711–1723CrossRef
2.
go back to reference Strehl C, Buttgereit F (2013) Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 380:32–40CrossRef Strehl C, Buttgereit F (2013) Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 380:32–40CrossRef
3.
go back to reference van Raalte DH, Ouwens DM, Diamant M (2009) Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 39:81–93CrossRef van Raalte DH, Ouwens DM, Diamant M (2009) Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 39:81–93CrossRef
4.
go back to reference Kuo T, Harris CA, Wang JC (2013) Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 380:79–88CrossRef Kuo T, Harris CA, Wang JC (2013) Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 380:79–88CrossRef
5.
go back to reference Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ (2014) Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab 25:197–211CrossRef Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ (2014) Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab 25:197–211CrossRef
6.
go back to reference Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S (2010) Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 13:423–428CrossRef Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S (2010) Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 13:423–428CrossRef
7.
go back to reference Braun TP, Marks DL (2015) The regulation of muscle mass by endogenous glucocorticoids. Front Physiol 6:12CrossRef Braun TP, Marks DL (2015) The regulation of muscle mass by endogenous glucocorticoids. Front Physiol 6:12CrossRef
8.
go back to reference Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695CrossRef Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695CrossRef
10.
go back to reference Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 295:E785–E797CrossRef Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 295:E785–E797CrossRef
11.
go back to reference Castillero E, Alamdari N, Lecker SH, Hasselgren PO (2013) Suppression of Atrogin1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism 62:1495–1502CrossRef Castillero E, Alamdari N, Lecker SH, Hasselgren PO (2013) Suppression of Atrogin1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism 62:1495–1502CrossRef
12.
go back to reference Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906CrossRef Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906CrossRef
13.
go back to reference Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134CrossRef Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134CrossRef
14.
go back to reference Wu Y, Zhao W, Zhao J, Zhang Y, Qin W, Pan J, Bauman WA, Blitzer RD, Cardozo C (2010) REDD1 is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology 151:1050–1059CrossRef Wu Y, Zhao W, Zhao J, Zhang Y, Qin W, Pan J, Bauman WA, Blitzer RD, Cardozo C (2010) REDD1 is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology 151:1050–1059CrossRef
15.
go back to reference Dong Y, Pan JS, Zhang L (2013) Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8:e58554CrossRef Dong Y, Pan JS, Zhang L (2013) Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8:e58554CrossRef
16.
go back to reference Hoekstra T, Geleijnse JM, Schouten EG, Kluft C (2004) Plasminogen activator inhibitor-type 1: its plasma determinants and relation with cardiovascular risk. Thromb Haemost 91:861–872CrossRef Hoekstra T, Geleijnse JM, Schouten EG, Kluft C (2004) Plasminogen activator inhibitor-type 1: its plasma determinants and relation with cardiovascular risk. Thromb Haemost 91:861–872CrossRef
17.
go back to reference Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53:336–346CrossRef Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53:336–346CrossRef
18.
go back to reference Mathieu P, Lemieux I, Despres JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 87:407–416CrossRef Mathieu P, Lemieux I, Despres JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 87:407–416CrossRef
19.
go back to reference Tamura Y, Kawao N, Okada K, Yano M, Okumoto K, Matsuo O, Kaji H (2013) Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 62:3170–3179CrossRef Tamura Y, Kawao N, Okada K, Yano M, Okumoto K, Matsuo O, Kaji H (2013) Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 62:3170–3179CrossRef
20.
go back to reference Kaji H (2016) Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol 6:1873–1896CrossRef Kaji H (2016) Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol 6:1873–1896CrossRef
21.
go back to reference Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H (2015) Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 64:2194–2206CrossRef Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H (2015) Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 64:2194–2206CrossRef
22.
go back to reference Carmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD (1997) Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96:3180–3191CrossRef Carmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD (1997) Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96:3180–3191CrossRef
23.
go back to reference Tanaka K, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T (2014) Active vitamin D possessed beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487CrossRef Tanaka K, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T (2014) Active vitamin D possessed beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487CrossRef
24.
go back to reference Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2014) Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 307:E278–E288CrossRef Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2014) Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 307:E278–E288CrossRef
25.
go back to reference Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129:227S–237SCrossRef Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129:227S–237SCrossRef
26.
go back to reference Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165CrossRef Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165CrossRef
27.
go back to reference Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708CrossRef Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708CrossRef
28.
go back to reference Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/Atrogin1. Am J Physiol Endocrinol Metab 307:E469–E484CrossRef Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/Atrogin1. Am J Physiol Endocrinol Metab 307:E469–E484CrossRef
29.
go back to reference Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–41229CrossRef Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–41229CrossRef
30.
go back to reference Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776CrossRef Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776CrossRef
31.
go back to reference Barlovatz-Meimon G, Frisdal E, Hantai D, Angles-Cano E, Gautron J (1990) Slow and fast rat skeletal muscles differ in their plasminogen activator activities. Eur J Cell Biol 52:157–162PubMed Barlovatz-Meimon G, Frisdal E, Hantai D, Angles-Cano E, Gautron J (1990) Slow and fast rat skeletal muscles differ in their plasminogen activator activities. Eur J Cell Biol 52:157–162PubMed
32.
go back to reference Quax PH, Frisdal E, Pedersen N, Bonavaud S, Thibert P, Martelly I, Verheijen JH, Blasi F, Barlovatz-Meimon G (1992) Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol 151:166–175CrossRef Quax PH, Frisdal E, Pedersen N, Bonavaud S, Thibert P, Martelly I, Verheijen JH, Blasi F, Barlovatz-Meimon G (1992) Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol 151:166–175CrossRef
33.
go back to reference Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99:2835–2844CrossRef Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99:2835–2844CrossRef
Metadata
Title
Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice
Authors
Yukinori Tamura
Naoyuki Kawao
Takeshi Shimoide
Kiyotaka Okada
Osamu Matsuo
Hiroshi Kaji
Publication date
01-03-2018
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 2/2018
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-017-0825-8

Other articles of this Issue 2/2018

Journal of Bone and Mineral Metabolism 2/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.