Skip to main content
Top
Published in: Cellular Oncology 4/2018

01-08-2018 | Review

Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target

Authors: Gustav van Niekerk, Anna-Mart Engelbrecht

Published in: Cellular Oncology | Issue 4/2018

Login to get access

Abstract

Background

Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis (‘Warburg effect’), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell.

Conclusions

The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.
Literature
1.
2.
go back to reference J.M.S. Lemons, X.-J. Feng, B.D. Bennett, A. Legesse-Miller, E.L. Johnson, I. Raitman, E.A. Pollina, H.A. Rabitz, J.D. Rabinowitz, H.A. Coller, Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)CrossRefPubMedPubMedCentral J.M.S. Lemons, X.-J. Feng, B.D. Bennett, A. Legesse-Miller, E.L. Johnson, I. Raitman, E.A. Pollina, H.A. Rabitz, J.D. Rabinowitz, H.A. Coller, Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)CrossRefPubMedPubMedCentral
3.
4.
go back to reference L.A.J. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016) L.A.J. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016)
5.
go back to reference S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)CrossRefPubMed S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)CrossRefPubMed
6.
go back to reference C.T. Jones, Fertil, fetal metabolism and fetal growth. J. Reprod. 47, 189–201 (1976)CrossRef C.T. Jones, Fertil, fetal metabolism and fetal growth. J. Reprod. 47, 189–201 (1976)CrossRef
7.
go back to reference J. Wahlberg, B. Ekman, L. Nyström, U. Hanson, B. Persson, H.J. Arnqvist, Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 114, 99–105 (2016)CrossRefPubMed J. Wahlberg, B. Ekman, L. Nyström, U. Hanson, B. Persson, H.J. Arnqvist, Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 114, 99–105 (2016)CrossRefPubMed
8.
go back to reference A. Mohammadbeigi, F. Farhadifar, N. Soufizadeh, N. Mohammadsalehi, M. Rezaiee, M. Aghaei, Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 3, 546 (2013)CrossRefPubMedPubMedCentral A. Mohammadbeigi, F. Farhadifar, N. Soufizadeh, N. Mohammadsalehi, M. Rezaiee, M. Aghaei, Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 3, 546 (2013)CrossRefPubMedPubMedCentral
9.
go back to reference M. Persson, D. Pasupathy, U. Hanson, M. Norman, Birth size distribution in 3,705 infants born to mothers with type 1 diabetes: A population-based study. Diabetes Care 34, 1145–1149 (2011)CrossRefPubMedPubMedCentral M. Persson, D. Pasupathy, U. Hanson, M. Norman, Birth size distribution in 3,705 infants born to mothers with type 1 diabetes: A population-based study. Diabetes Care 34, 1145–1149 (2011)CrossRefPubMedPubMedCentral
10.
go back to reference L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef
11.
go back to reference H. Makinoshima, M. Takita, K. Saruwatari, S. Umemura, Y. Obata, G. Ishii, S. Matsumoto, E. Sugiyama, A. Ochiai, R. Abe, K. Goto, H. Esumi, K. Tsuchihara, Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem. 290, 17495–17504 (2015)CrossRefPubMedPubMedCentral H. Makinoshima, M. Takita, K. Saruwatari, S. Umemura, Y. Obata, G. Ishii, S. Matsumoto, E. Sugiyama, A. Ochiai, R. Abe, K. Goto, H. Esumi, K. Tsuchihara, Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem. 290, 17495–17504 (2015)CrossRefPubMedPubMedCentral
12.
go back to reference M. Muller, M. Mentel, J.J. van Hellemond, K. Henze, C. Woehle, S.B. Gould, R.-Y. Yu, M. van der Giezen, A.G.M. Tielens, W.F. Martin, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012)CrossRefPubMedPubMedCentral M. Muller, M. Mentel, J.J. van Hellemond, K. Henze, C. Woehle, S.B. Gould, R.-Y. Yu, M. van der Giezen, A.G.M. Tielens, W.F. Martin, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012)CrossRefPubMedPubMedCentral
13.
go back to reference T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)CrossRefPubMed T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)CrossRefPubMed
15.
go back to reference M. Saqcena, S. Mukhopadhyay, C. Hosny, A. Alhamed, A. Chatterjee, D.A. Foster, Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015)CrossRefPubMed M. Saqcena, S. Mukhopadhyay, C. Hosny, A. Alhamed, A. Chatterjee, D.A. Foster, Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015)CrossRefPubMed
16.
go back to reference J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)CrossRefPubMedPubMedCentral J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)CrossRefPubMedPubMedCentral
17.
go back to reference S. Cardaci, M.R. Ciriolo, TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012, 1–9 (2012)CrossRef S. Cardaci, M.R. Ciriolo, TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012, 1–9 (2012)CrossRef
18.
go back to reference A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)CrossRefPubMed A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)CrossRefPubMed
19.
go back to reference M. Sciacovelli, E. Gonçalves, T.I. Johnson, V.R. Zecchini, E. Gaude, A.V. Drubbel, S.J. Theobald, S.R. Abbo, M.G. Tran, V. Rajeeve, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(544), 544–547 (2016)CrossRefPubMedPubMedCentral M. Sciacovelli, E. Gonçalves, T.I. Johnson, V.R. Zecchini, E. Gaude, A.V. Drubbel, S.J. Theobald, S.R. Abbo, M.G. Tran, V. Rajeeve, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(544), 544–547 (2016)CrossRefPubMedPubMedCentral
20.
go back to reference Z. Xie, J. Dai, L. Dai, M. Tan, Z. Cheng, Y. Wu, J.D. Boeke, Y. Zhao, Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107 (2012)CrossRefPubMedPubMedCentral Z. Xie, J. Dai, L. Dai, M. Tan, Z. Cheng, Y. Wu, J.D. Boeke, Y. Zhao, Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107 (2012)CrossRefPubMedPubMedCentral
21.
go back to reference X. Mu, T. Zhao, C. Xu, W. Shi, B. Geng, J. Shen, C. Zhang, J. Pan, J. Yang, S. Hu, Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174 (2017)PubMedPubMedCentral X. Mu, T. Zhao, C. Xu, W. Shi, B. Geng, J. Shen, C. Zhang, J. Pan, J. Yang, S. Hu, Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174 (2017)PubMedPubMedCentral
22.
go back to reference A. Stincone, A. Prigione, T. Cramer, M. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N. Grüning, A. Krüger, M. Tauqeer Alam, The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2015)CrossRefPubMed A. Stincone, A. Prigione, T. Cramer, M. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N. Grüning, A. Krüger, M. Tauqeer Alam, The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2015)CrossRefPubMed
24.
go back to reference E.H. Ma, G. Bantug, T. Griss, S. Condotta, R.M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M.L. Balmer, Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017)CrossRefPubMed E.H. Ma, G. Bantug, T. Griss, S. Condotta, R.M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M.L. Balmer, Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017)CrossRefPubMed
26.
go back to reference J. Fan, J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)CrossRefPubMedPubMedCentral J. Fan, J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)CrossRefPubMedPubMedCentral
27.
go back to reference M. Ost, S. Keipert, E.M. van Schothorst, V. Donner, I. van der Stelt, A.P. Kipp, K.-J. Petzke, M. Jove, R. Pamplona, M. Portero-Otin, Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2015)CrossRefPubMed M. Ost, S. Keipert, E.M. van Schothorst, V. Donner, I. van der Stelt, A.P. Kipp, K.-J. Petzke, M. Jove, R. Pamplona, M. Portero-Otin, Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2015)CrossRefPubMed
29.
go back to reference E.L. Pearce, M.C. Poffenberger, C.H. Chang, R.G. Jones, Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)CrossRefPubMedPubMedCentral E.L. Pearce, M.C. Poffenberger, C.H. Chang, R.G. Jones, Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)CrossRefPubMedPubMedCentral
30.
go back to reference C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010)CrossRefPubMed C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010)CrossRefPubMed
31.
go back to reference R. Sears, F. Nuckolls, E. Haura, Y. Taya, K. Tamai, J.R. Nevins, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)CrossRefPubMedPubMedCentral R. Sears, F. Nuckolls, E. Haura, Y. Taya, K. Tamai, J.R. Nevins, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)CrossRefPubMedPubMedCentral
32.
go back to reference C.D. Little, M.M. Nau, D.N. Carney, A.F. Gazdar, J.D. Minna, Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983)CrossRefPubMed C.D. Little, M.M. Nau, D.N. Carney, A.F. Gazdar, J.D. Minna, Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983)CrossRefPubMed
33.
go back to reference W. Yang, Y. Zheng, Y. Xia, H. Ji, X. Chen, F. Guo, C.A. Lyssiotis, K. Aldape, L.C. Cantley, Z. Lu, ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012)CrossRefPubMedPubMedCentral W. Yang, Y. Zheng, Y. Xia, H. Ji, X. Chen, F. Guo, C.A. Lyssiotis, K. Aldape, L.C. Cantley, Z. Lu, ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012)CrossRefPubMedPubMedCentral
34.
go back to reference T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)CrossRefPubMedPubMedCentral T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)CrossRefPubMedPubMedCentral
35.
go back to reference H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)CrossRefPubMed H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)CrossRefPubMed
36.
go back to reference I. Nemazanyy, C. Espeillac, M. Pende, G. Panasyuk, Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem. Soc. Trans. 41, 917–922 (2013)CrossRefPubMed I. Nemazanyy, C. Espeillac, M. Pende, G. Panasyuk, Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem. Soc. Trans. 41, 917–922 (2013)CrossRefPubMed
38.
go back to reference J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)CrossRefPubMed J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)CrossRefPubMed
39.
go back to reference B. Chaneton, P. Hillmann, L. Zheng, A.C.L. Martin, O.D.K. Maddocks, A. Chokkathukalam, J.E. Coyle, A. Jankevics, F.P. Holding, K.H. Vousden, C. Frezza, M. O’Reilly, E. Gottlieb, Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012)CrossRefPubMedPubMedCentral B. Chaneton, P. Hillmann, L. Zheng, A.C.L. Martin, O.D.K. Maddocks, A. Chokkathukalam, J.E. Coyle, A. Jankevics, F.P. Holding, K.H. Vousden, C. Frezza, M. O’Reilly, E. Gottlieb, Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012)CrossRefPubMedPubMedCentral
40.
go back to reference M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016)CrossRefPubMed M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016)CrossRefPubMed
41.
go back to reference C. Kung, J. Hixon, S. Choe, K. Marks, S. Gross, E. Murphy, B. DeLaBarre, G. Cianchetta, S. Sethumadhavan, X. Wang, Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012)CrossRefPubMedPubMedCentral C. Kung, J. Hixon, S. Choe, K. Marks, S. Gross, E. Murphy, B. DeLaBarre, G. Cianchetta, S. Sethumadhavan, X. Wang, Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012)CrossRefPubMedPubMedCentral
42.
go back to reference H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw, M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 110, 5881–5886 (2013)CrossRefPubMedPubMedCentral H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw, M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 110, 5881–5886 (2013)CrossRefPubMedPubMedCentral
43.
44.
go back to reference T. Sakata, G. Ferdous, T. Tsuruta, T. Satoh, S. Baba, T. Muto, A. Ueno, Y. Kanai, H. Endou, I. Okayasu, L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int. 59, 7–18 (2009)CrossRefPubMed T. Sakata, G. Ferdous, T. Tsuruta, T. Satoh, S. Baba, T. Muto, A. Ueno, Y. Kanai, H. Endou, I. Okayasu, L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int. 59, 7–18 (2009)CrossRefPubMed
45.
go back to reference H. Nawashiro, N. Otani, N. Shinomiya, S. Fukui, H. Ooigawa, K. Shima, H. Matsuo, Y. Kanai, H. Endou, L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006)CrossRefPubMed H. Nawashiro, N. Otani, N. Shinomiya, S. Fukui, H. Ooigawa, K. Shima, H. Matsuo, Y. Kanai, H. Endou, L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006)CrossRefPubMed
46.
go back to reference M.-A. Bjornsti, P.J. Houghton, The TOR pathway: A target for cancer therapy. Nat. Rev. 4, 335–348 (2004)CrossRef M.-A. Bjornsti, P.J. Houghton, The TOR pathway: A target for cancer therapy. Nat. Rev. 4, 335–348 (2004)CrossRef
47.
go back to reference D. Anastasiou, G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, A.T. Sasaki, J.W. Locasale, D.S. Auld, C.J. Thomas, M.G. Vander Heiden, L.C. Cantley, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)CrossRefPubMedPubMedCentral D. Anastasiou, G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, A.T. Sasaki, J.W. Locasale, D.S. Auld, C.J. Thomas, M.G. Vander Heiden, L.C. Cantley, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)CrossRefPubMedPubMedCentral
48.
go back to reference W.J. Israelsen, T.L. Dayton, S.M. Davidson, B.P. Fiske, A.M. Hosios, G. Bellinger, J. Li, Y. Yu, M. Sasaki, J.W. Horner, PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013)CrossRefPubMed W.J. Israelsen, T.L. Dayton, S.M. Davidson, B.P. Fiske, A.M. Hosios, G. Bellinger, J. Li, Y. Yu, M. Sasaki, J.W. Horner, PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013)CrossRefPubMed
49.
go back to reference T.L. Dayton, V. Gocheva, K.M. Miller, W.J. Israelsen, A. Bhutkar, C.B. Clish, S.M. Davidson, A. Luengo, R.T. Bronson, T. Jacks, M.G. Vander Heiden, Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016)CrossRefPubMedPubMedCentral T.L. Dayton, V. Gocheva, K.M. Miller, W.J. Israelsen, A. Bhutkar, C.B. Clish, S.M. Davidson, A. Luengo, R.T. Bronson, T. Jacks, M.G. Vander Heiden, Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016)CrossRefPubMedPubMedCentral
50.
go back to reference A.N. Lau, W.J. Israelsen, J. Roper, M.J. Sinnamon, L. Georgeon, T.L. Dayton, A.L. Hillis, O.H. Yilmaz, D. Di Vizio, K.E. Hung, M.G. Vander Heiden, PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab. 5, 10 (2017)CrossRefPubMedPubMedCentral A.N. Lau, W.J. Israelsen, J. Roper, M.J. Sinnamon, L. Georgeon, T.L. Dayton, A.L. Hillis, O.H. Yilmaz, D. Di Vizio, K.E. Hung, M.G. Vander Heiden, PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab. 5, 10 (2017)CrossRefPubMedPubMedCentral
51.
go back to reference X. Gao, H. Wang, J.J. Yang, X. Liu, Z.R. Liu, Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012)CrossRefPubMedPubMedCentral X. Gao, H. Wang, J.J. Yang, X. Liu, Z.R. Liu, Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012)CrossRefPubMedPubMedCentral
52.
go back to reference W. Yang, Y. Xia, D. Hawke, X. Li, J. Liang, D. Xing, K. Aldape, T. Hunter, W.K. Alfred Yung, Z. Lu, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012)CrossRefPubMedPubMedCentral W. Yang, Y. Xia, D. Hawke, X. Li, J. Liang, D. Xing, K. Aldape, T. Hunter, W.K. Alfred Yung, Z. Lu, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012)CrossRefPubMedPubMedCentral
53.
go back to reference S. Wolff, J.S. Weissman, A. Dillin, Differential scales of protein quality control. Cell 157, 52–64 (2014)CrossRefPubMed S. Wolff, J.S. Weissman, A. Dillin, Differential scales of protein quality control. Cell 157, 52–64 (2014)CrossRefPubMed
55.
go back to reference A. Mullard, Cancer metabolism pipeline breaks new ground. Nat. Rev. Drug Discov. 15, 735–737 (2016)CrossRefPubMed A. Mullard, Cancer metabolism pipeline breaks new ground. Nat. Rev. Drug Discov. 15, 735–737 (2016)CrossRefPubMed
56.
go back to reference K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011) K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011)
57.
go back to reference H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016)CrossRefPubMedPubMedCentral H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016)CrossRefPubMedPubMedCentral
58.
go back to reference S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)CrossRefPubMed S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)CrossRefPubMed
59.
go back to reference L. Yang, S. Venneti, D. Nagrath, Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017)CrossRefPubMed L. Yang, S. Venneti, D. Nagrath, Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017)CrossRefPubMed
60.
go back to reference S.L. Warner, K.J. Carpenter, D.J. Bearss, Activators of PKM2 in cancer metabolism. Future Med. Chem. 6, 1167–1178 (2014)CrossRefPubMed S.L. Warner, K.J. Carpenter, D.J. Bearss, Activators of PKM2 in cancer metabolism. Future Med. Chem. 6, 1167–1178 (2014)CrossRefPubMed
61.
go back to reference S.Y. Lunt, V. Muralidhar, A.M. Hosios, W.J. Israelsen, D.Y. Gui, L. Newhouse, M. Ogrodzinski, V. Hecht, K. Xu, P.N.M. Acevedo, D.P. Hollern, G. Bellinger, T.L. Dayton, S. Christen, I. Elia, A.T. Dinh, G. Stephanopoulos, S.R. Manalis, M.B. Yaffe, E.R. Andrechek, S.M. Fendt, M.G. Vander Heiden, Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015)CrossRefPubMed S.Y. Lunt, V. Muralidhar, A.M. Hosios, W.J. Israelsen, D.Y. Gui, L. Newhouse, M. Ogrodzinski, V. Hecht, K. Xu, P.N.M. Acevedo, D.P. Hollern, G. Bellinger, T.L. Dayton, S. Christen, I. Elia, A.T. Dinh, G. Stephanopoulos, S.R. Manalis, M.B. Yaffe, E.R. Andrechek, S.M. Fendt, M.G. Vander Heiden, Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015)CrossRefPubMed
62.
go back to reference S.P. Gravel, L. Hulea, N. Toban, E. Birman, M.J. Blouin, M. Zakikhani, Y. Zhao, I. Topisirovic, J. St-Pierre, M. Pollak, Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014)CrossRefPubMed S.P. Gravel, L. Hulea, N. Toban, E. Birman, M.J. Blouin, M. Zakikhani, Y. Zhao, I. Topisirovic, J. St-Pierre, M. Pollak, Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014)CrossRefPubMed
63.
go back to reference A. Janzer, N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, K. Struhl, Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 10574–10579 (2014) A. Janzer, N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, K. Struhl, Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 10574–10579 (2014)
64.
go back to reference E.M. Palsson-Mcdermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, M.W.M. Van Den Bosch, S.R. Quinn, R. Domingo-Fernandez, D.G.W. Johnson, J.K. Jiang, W.J. Israelsen, J. Keane, C. Thomas, C. Clish, M. Vanden Heiden, R.J. Xavier, L.A.J. O’Neill, Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)CrossRefPubMedPubMedCentral E.M. Palsson-Mcdermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, M.W.M. Van Den Bosch, S.R. Quinn, R. Domingo-Fernandez, D.G.W. Johnson, J.K. Jiang, W.J. Israelsen, J. Keane, C. Thomas, C. Clish, M. Vanden Heiden, R.J. Xavier, L.A.J. O’Neill, Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)CrossRefPubMedPubMedCentral
65.
go back to reference A. Yuan, Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. W. Chen, P.C. Yang, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015) A. Yuan, Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. W. Chen, P.C. Yang, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015)
66.
go back to reference M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, W. Di, A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 1 (2014)CrossRef M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, W. Di, A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 1 (2014)CrossRef
67.
go back to reference G. Comito, E. Giannoni, C.P. Segura, P. Barcellos-De-Souza, M.R. Raspollini, G. Baroni, M. Lanciotti, S. Serni, P. Chiarugi, Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014)CrossRefPubMed G. Comito, E. Giannoni, C.P. Segura, P. Barcellos-De-Souza, M.R. Raspollini, G. Baroni, M. Lanciotti, S. Serni, P. Chiarugi, Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014)CrossRefPubMed
68.
go back to reference L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)CrossRef L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)CrossRef
69.
go back to reference J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9 (2016)CrossRefPubMed J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9 (2016)CrossRefPubMed
70.
go back to reference R.J. Kathawala, P. Gupta, C.R. Ashby, Z.-S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 18, 1–17 (2015)CrossRefPubMed R.J. Kathawala, P. Gupta, C.R. Ashby, Z.-S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 18, 1–17 (2015)CrossRefPubMed
71.
go back to reference Y. Kam, T. Das, H. Tian, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies, R.A. Gatenby, Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges”. Int. J. Cancer 136, E188–E196 (2015)CrossRefPubMed Y. Kam, T. Das, H. Tian, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies, R.A. Gatenby, Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges”. Int. J. Cancer 136, E188–E196 (2015)CrossRefPubMed
72.
go back to reference C. Pan, X. Wang, K. Shi, Y. Zheng, J. Li, Y. Chen, L. Jin, Z. Pan, MiR-122 Reverses the doxorubicinresistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One 11, e0152090 (2016) C. Pan, X. Wang, K. Shi, Y. Zheng, J. Li, Y. Chen, L. Jin, Z. Pan, MiR-122 Reverses the doxorubicinresistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One 11, e0152090 (2016)
73.
go back to reference Y. Lin, F. Lv, F. Liu, X. Guo, Y. Fan, F. Gu, J. Gu, L. Fu, High expression of pyruvate kinase M2 is associated with Chemosensitivity to Epirubicin and 5-fluorouracil in breast Cancer. J. Cancer 6, 1130–1139 (2015)CrossRefPubMedPubMedCentral Y. Lin, F. Lv, F. Liu, X. Guo, Y. Fan, F. Gu, J. Gu, L. Fu, High expression of pyruvate kinase M2 is associated with Chemosensitivity to Epirubicin and 5-fluorouracil in breast Cancer. J. Cancer 6, 1130–1139 (2015)CrossRefPubMedPubMedCentral
Metadata
Title
Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target
Authors
Gustav van Niekerk
Anna-Mart Engelbrecht
Publication date
01-08-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0383-7

Other articles of this Issue 4/2018

Cellular Oncology 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine