Skip to main content
Top
Published in: Cellular Oncology 4/2018

01-08-2018 | Review

Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance

Authors: Pritish Nilendu, Sachin C. Sarode, Devashree Jahagirdar, Ishita Tandon, Shankargouda Patil, Gargi S. Sarode, Jayanta K. Pal, Nilesh Kumar Sharma

Published in: Cellular Oncology | Issue 4/2018

Login to get access

Abstract

Background

Various cancers have been found to be associated with heterogeneous and adaptive tumor microenvironments (TMEs) and to be driven by the local TMEs in which they thrive. Cancer heterogeneity plays an important role in tumor cell survival, progression and drug resistance. The diverse cellular components of the TME may include cancer-associated fibroblasts, adipocytes, pericytes, mesenchymal stem cells, endothelial cells, lymphocytes and other immune cells. These components may support tumor development through the secretion of growth factors, evasion from immune checkpoints, metabolic adaptations, modulations of the extracellular matrix, activation of oncogenes and the acquisition of drug resistance. Here, we will address recent advances in our understanding of the molecular mechanisms underlying stromal-tumor cell interactions, with special emphasis on basic and pre-clinical information that may facilitate the design of novel personalized cancer therapies.

Conclusions

This review presents a holistic view on the translational potential of the interplay between stromal cells and cancer cells. This interplay is currently being employed for the development of promising preclinical and clinical biomarkers, and the design of small molecule inhibitors, antibodies and small RNAs for (combinatorial) cancer treatment options. In addition, nano-carriers, tissue scaffolds and 3-D based matrices are being developed to precisely and safely deliver these compounds.
Literature
1.
go back to reference M. Plummer, C. de Martel, J. Vignat, J. Ferlay, F. Bray, S. Franceschi, Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health 4, e609–e616 (2016)CrossRef M. Plummer, C. de Martel, J. Vignat, J. Ferlay, F. Bray, S. Franceschi, Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health 4, e609–e616 (2016)CrossRef
3.
4.
go back to reference A.A. Alizadeh, V. Aranda, A. Bardelli, C. Blanpain, C. Bock, C. Borowski, C. Caldas, A. Califano, M. Doherty, M. Elsner, M. Esteller, R. Fitzgerald, J.O. Korbel, P. Lichter, C.E. Mason, N. Navin, D. Peer, K. Polyak, C.W.M. Roberts, L. Siu, A. Snyder, H. Stower, C. Swanton, R.G.W. Verhaak, J.C. Zenklusen, J. Zuber, J. Zucman-Rossi, Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015)PubMedPubMedCentralCrossRef A.A. Alizadeh, V. Aranda, A. Bardelli, C. Blanpain, C. Bock, C. Borowski, C. Caldas, A. Califano, M. Doherty, M. Elsner, M. Esteller, R. Fitzgerald, J.O. Korbel, P. Lichter, C.E. Mason, N. Navin, D. Peer, K. Polyak, C.W.M. Roberts, L. Siu, A. Snyder, H. Stower, C. Swanton, R.G.W. Verhaak, J.C. Zenklusen, J. Zuber, J. Zucman-Rossi, Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015)PubMedPubMedCentralCrossRef
5.
go back to reference J.W. Clark, B.A. Chabner, Limits to precision cancer medicine. N. Engl. J. Med. 376, 95–97 (2017)CrossRef J.W. Clark, B.A. Chabner, Limits to precision cancer medicine. N. Engl. J. Med. 376, 95–97 (2017)CrossRef
6.
go back to reference L.A. Liotta, E.C. Kohn, The microenvironment of the tumour host interface. Nature 411, 375–379 (2001)PubMedCrossRef L.A. Liotta, E.C. Kohn, The microenvironment of the tumour host interface. Nature 411, 375–379 (2001)PubMedCrossRef
8.
go back to reference J.W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004)PubMedCrossRef J.W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004)PubMedCrossRef
9.
go back to reference V. Kumar, L. Donthireddy, D. Marvel, T. Condamine, F. Wang, S. Lavilla-Alonso, A. Hashimoto, P. Vonteddu, R. Behera, M.A. Goins, C. Mulligan, B. Nam, N. Hockstein, F. Denstman, S. Shakamuri, D.W. Speicher, A.T. Weeraratna, T. Chao, R.H. Vonderheide, L.R. Languino, P. Ordentlich, Q. Liu, X. Xu, A. Lo, E. Puré, C. Zhang, A. Loboda, M.A. Sepulveda, L.A. Snyder, D.I. Gabrilovich, Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32 e655, 654–668 (2017) V. Kumar, L. Donthireddy, D. Marvel, T. Condamine, F. Wang, S. Lavilla-Alonso, A. Hashimoto, P. Vonteddu, R. Behera, M.A. Goins, C. Mulligan, B. Nam, N. Hockstein, F. Denstman, S. Shakamuri, D.W. Speicher, A.T. Weeraratna, T. Chao, R.H. Vonderheide, L.R. Languino, P. Ordentlich, Q. Liu, X. Xu, A. Lo, E. Puré, C. Zhang, A. Loboda, M.A. Sepulveda, L.A. Snyder, D.I. Gabrilovich, Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32 e655, 654–668 (2017)
10.
go back to reference Y. Qiao, C. Zhang, A. Li, D. Wang, Z. Luo, Y. Ping, B. Zhou, S. Liu, H. Li, D. Yue, Z. Zhang, X. Chen, Z. Shen, J. Lian, Y. Li, S. Wang, F. Li, L. Huang, L. Wang, B. Zhang, J. Yu, Z. Qin, Y. Zhang, IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37, 873–883 (2017). https://doi.org/10.1038/onc.2017.387 PubMedCrossRef Y. Qiao, C. Zhang, A. Li, D. Wang, Z. Luo, Y. Ping, B. Zhou, S. Liu, H. Li, D. Yue, Z. Zhang, X. Chen, Z. Shen, J. Lian, Y. Li, S. Wang, F. Li, L. Huang, L. Wang, B. Zhang, J. Yu, Z. Qin, Y. Zhang, IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37, 873–883 (2017). https://​doi.​org/​10.​1038/​onc.​2017.​387 PubMedCrossRef
11.
go back to reference H.G. Augustin, G.Y. Koh, Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017)PubMedCrossRef H.G. Augustin, G.Y. Koh, Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017)PubMedCrossRef
12.
go back to reference M. Spaw, S. Anant, S.M. Thomas, Stromal contributions to the carcinogenic process. Mol. Carcinog. 56, 1199–1213 (2017)PubMedCrossRef M. Spaw, S. Anant, S.M. Thomas, Stromal contributions to the carcinogenic process. Mol. Carcinog. 56, 1199–1213 (2017)PubMedCrossRef
13.
14.
go back to reference M. Cheng, S. Ho, J.H. Yoo, D.H. Tran, K. Bakirtzi, B. Su, D.H. Tran, Y. Kubota, R. Ichikawa, H.W. Koon, Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin. Exp. Gastroenterol. 8, 13–29 (2015)PubMed M. Cheng, S. Ho, J.H. Yoo, D.H. Tran, K. Bakirtzi, B. Su, D.H. Tran, Y. Kubota, R. Ichikawa, H.W. Koon, Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts. Clin. Exp. Gastroenterol. 8, 13–29 (2015)PubMed
15.
go back to reference V. Gkretsi, A. Stylianou, P. Papageorgis, C. Polydorou, T. Stylianopoulos, Remodeling components of the tumor microenvironment to enhance cancer therapy. Front. Oncol. 5, 214 (2015) V. Gkretsi, A. Stylianou, P. Papageorgis, C. Polydorou, T. Stylianopoulos, Remodeling components of the tumor microenvironment to enhance cancer therapy. Front. Oncol. 5, 214 (2015)
16.
go back to reference D. Jahagirdar, S. Purohit, A. Jain, N.K. Sharma, Export of microRNAs: A bridge between breast carcinoma and their neighboring cells. Front. Oncol. 6, 147 (2016) D. Jahagirdar, S. Purohit, A. Jain, N.K. Sharma, Export of microRNAs: A bridge between breast carcinoma and their neighboring cells. Front. Oncol. 6, 147 (2016)
17.
go back to reference M. Najar, H. Fayyad-Kazan, W.H. Faour, B. Badran, F. Journe, L. Lagneaux, Breast cancer cells and bone marrow mesenchymal stromal cells: A regulated modulation of the breast tumor in the context of immune response. Inflamm. Res. 66, 129–139 (2017)PubMedCrossRef M. Najar, H. Fayyad-Kazan, W.H. Faour, B. Badran, F. Journe, L. Lagneaux, Breast cancer cells and bone marrow mesenchymal stromal cells: A regulated modulation of the breast tumor in the context of immune response. Inflamm. Res. 66, 129–139 (2017)PubMedCrossRef
18.
go back to reference P. Nilendu, A. Kumar, A. Kumar, J.K. Pal, N.K. Sharma, Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack. Int. J. Cancer 142, 7–17 (2017)PubMedCrossRef P. Nilendu, A. Kumar, A. Kumar, J.K. Pal, N.K. Sharma, Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack. Int. J. Cancer 142, 7–17 (2017)PubMedCrossRef
19.
go back to reference R. Kalluri, The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016)PubMedCrossRef R. Kalluri, The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016)PubMedCrossRef
20.
go back to reference P.J. Morin, in Cancer Drug Resistance, ed. by B.A. Teicher (Humana Press, Totowa, NJ, 2006), pp. 201–210 P.J. Morin, in Cancer Drug Resistance, ed. by B.A. Teicher (Humana Press, Totowa, NJ, 2006), pp. 201–210
21.
go back to reference A. Morandi, E. Giannoni, P. Chiarugi, Nutrient exploitation within the tumor–stroma metabolic crosstalk. Trends Cancer 2, 736–746 (2016)PubMedCrossRef A. Morandi, E. Giannoni, P. Chiarugi, Nutrient exploitation within the tumor–stroma metabolic crosstalk. Trends Cancer 2, 736–746 (2016)PubMedCrossRef
22.
go back to reference K. Cyll, E. Ersvær, L. Vlatkovic, M. Pradhan, W. Kildal, M.A. Kjær, A. Kleppe, T.S. Hveem, B. Carlsen, S. Gill, S. Löffeler, E.S. Haug, H. Wæhre, P. Sooriakumaran, H.E. Danielsen, Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br. J. Cancer 117, 367–375 (2017)PubMedPubMedCentralCrossRef K. Cyll, E. Ersvær, L. Vlatkovic, M. Pradhan, W. Kildal, M.A. Kjær, A. Kleppe, T.S. Hveem, B. Carlsen, S. Gill, S. Löffeler, E.S. Haug, H. Wæhre, P. Sooriakumaran, H.E. Danielsen, Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br. J. Cancer 117, 367–375 (2017)PubMedPubMedCentralCrossRef
23.
go back to reference M. Majidinia, B. Yousefi, Breast tumor stroma: A driving force in the development of resistance to therapies. Chem. Biol. Drug Des. 89, 309–318 (2017)PubMedCrossRef M. Majidinia, B. Yousefi, Breast tumor stroma: A driving force in the development of resistance to therapies. Chem. Biol. Drug Des. 89, 309–318 (2017)PubMedCrossRef
24.
go back to reference N. McGranahan, C. Swanton, Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 168, 613–628 (2017)PubMedCrossRef N. McGranahan, C. Swanton, Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 168, 613–628 (2017)PubMedCrossRef
25.
go back to reference N. Picco, E. Sahai, P.K. Maini, A.R.A. Anderson, Integrating models to quantify environment-mediated drug resistance. Cancer Res. 77, 5409–5418 (2017)PubMedCrossRef N. Picco, E. Sahai, P.K. Maini, A.R.A. Anderson, Integrating models to quantify environment-mediated drug resistance. Cancer Res. 77, 5409–5418 (2017)PubMedCrossRef
27.
go back to reference A.L. Ribeiro, O.K. Okamoto, Combined effects of pericytes in the tumor microenvironment. Stem Cells Int. 868475, 2015 (2015) A.L. Ribeiro, O.K. Okamoto, Combined effects of pericytes in the tumor microenvironment. Stem Cells Int. 868475, 2015 (2015)
28.
go back to reference C.C. Maley, A. Aktipis, T.A. Graham, A. Sottoriva, A.M. Boddy, Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017)PubMedPubMedCentralCrossRef C.C. Maley, A. Aktipis, T.A. Graham, A. Sottoriva, A.M. Boddy, Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017)PubMedPubMedCentralCrossRef
29.
go back to reference H. Omar Al-Hassi, O. Ng, M. Brookes, Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 67, 395 (2018)PubMedCrossRef H. Omar Al-Hassi, O. Ng, M. Brookes, Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 67, 395 (2018)PubMedCrossRef
31.
go back to reference Z. Benyahia, N. Dussault, M. Cayol, R. Sigaud, C. Berenguer-Daize, C. Delfino, A. Tounsi, S. Garcia, P.M. Martin, K. Mabrouk, L. Ouafik, Stromal fibroblasts present in breast carcinomas promote tumor growth and angiogenesis through adrenomedullin secretion. Oncotarget 8, 15744–15762 (2017)PubMedPubMedCentralCrossRef Z. Benyahia, N. Dussault, M. Cayol, R. Sigaud, C. Berenguer-Daize, C. Delfino, A. Tounsi, S. Garcia, P.M. Martin, K. Mabrouk, L. Ouafik, Stromal fibroblasts present in breast carcinomas promote tumor growth and angiogenesis through adrenomedullin secretion. Oncotarget 8, 15744–15762 (2017)PubMedPubMedCentralCrossRef
32.
go back to reference L. Bolm, S. Cigolla, U.A. Wittel, U.T. Hopt, T. Keck, D. Rades, P. Bronsert, U.F. Wellner, The role of fibroblasts in pancreatic cancer: Extracellular matrix versus paracrine factors. Transl. Oncol. 10, 578–588 (2017)PubMedPubMedCentralCrossRef L. Bolm, S. Cigolla, U.A. Wittel, U.T. Hopt, T. Keck, D. Rades, P. Bronsert, U.F. Wellner, The role of fibroblasts in pancreatic cancer: Extracellular matrix versus paracrine factors. Transl. Oncol. 10, 578–588 (2017)PubMedPubMedCentralCrossRef
33.
go back to reference N. Cohen, O. Shani, Y. Raz, Y. Sharon, D. Hoffman, L. Abramovitz, N. Erez, Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36, 4457–4468 (2017)PubMedPubMedCentralCrossRef N. Cohen, O. Shani, Y. Raz, Y. Sharon, D. Hoffman, L. Abramovitz, N. Erez, Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36, 4457–4468 (2017)PubMedPubMedCentralCrossRef
35.
go back to reference A. Aboussekhra, Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int. J. Dev. Biol. 55, 841–849 (2011)PubMedCrossRef A. Aboussekhra, Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int. J. Dev. Biol. 55, 841–849 (2011)PubMedCrossRef
36.
go back to reference U.M. Polanska, A. Orimo, Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol. 228, 1651–1657 (2013)PubMedCrossRef U.M. Polanska, A. Orimo, Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol. 228, 1651–1657 (2013)PubMedCrossRef
37.
go back to reference H. Luo, G. Tu, Z. Liu, M. Liu, Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Lett. 361, 155–163 (2015)PubMedCrossRef H. Luo, G. Tu, Z. Liu, M. Liu, Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Lett. 361, 155–163 (2015)PubMedCrossRef
38.
go back to reference A. Orimo, R.A. Weinberg, Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006)PubMedCrossRef A. Orimo, R.A. Weinberg, Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006)PubMedCrossRef
39.
go back to reference G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef
40.
go back to reference P. Mishra, D. Banerjee, A. Ben-Baruch, Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J. Leukoc. Biol. 89, 31–39 (2011)PubMedCrossRef P. Mishra, D. Banerjee, A. Ben-Baruch, Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J. Leukoc. Biol. 89, 31–39 (2011)PubMedCrossRef
41.
go back to reference K.O. Osuala, M. Sameni, S. Shah, N. Aggarwal, M.L. Simonait, O.E. Franco, Y. Hong, S.W. Hayward, F. Behbod, R.R. Mattingly, B.F. Sloane, Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer 15, 584 (2015)PubMedPubMedCentralCrossRef K.O. Osuala, M. Sameni, S. Shah, N. Aggarwal, M.L. Simonait, O.E. Franco, Y. Hong, S.W. Hayward, F. Behbod, R.R. Mattingly, B.F. Sloane, Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer 15, 584 (2015)PubMedPubMedCentralCrossRef
42.
go back to reference Ö. Sağlam, Z.S. Ünal, C. Subaşı, E. Ulukaya, E. Karaöz, IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis. Tumour Biol. 36, 5667–5677 (2015)PubMedCrossRef Ö. Sağlam, Z.S. Ünal, C. Subaşı, E. Ulukaya, E. Karaöz, IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis. Tumour Biol. 36, 5667–5677 (2015)PubMedCrossRef
43.
go back to reference D. von Ahrens, T.D. Bhagat, D. Nagrath, A. Maitra, A. Verma, The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10, 76 (2017) D. von Ahrens, T.D. Bhagat, D. Nagrath, A. Maitra, A. Verma, The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10, 76 (2017)
44.
go back to reference S.-F. Hendrayani, H.H. Al-Khalaf, A. Aboussekhra, The cytokine IL-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J. Biol. Chem. 289, 30962–30976 (2014)PubMedPubMedCentralCrossRef S.-F. Hendrayani, H.H. Al-Khalaf, A. Aboussekhra, The cytokine IL-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J. Biol. Chem. 289, 30962–30976 (2014)PubMedPubMedCentralCrossRef
45.
go back to reference T. Ishimoto, K. Miyake, T. Nandi, M. Yashiro, N. Onishi, K.K. Huang, S.J. Lin, R. Kalpana, S.T. Tay, Y. Suzuki, B.C. Cho, D. Kuroda, K. Arima, D. Izumi, M. Iwatsuki, Y. Baba, E. Oki, M. Watanabe, H. Saya, K. Hirakawa, H. Baba, P. Tan, Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology 153, 191-204. e116 (2017), 204.e16 T. Ishimoto, K. Miyake, T. Nandi, M. Yashiro, N. Onishi, K.K. Huang, S.J. Lin, R. Kalpana, S.T. Tay, Y. Suzuki, B.C. Cho, D. Kuroda, K. Arima, D. Izumi, M. Iwatsuki, Y. Baba, E. Oki, M. Watanabe, H. Saya, K. Hirakawa, H. Baba, P. Tan, Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology 153, 191-204. e116 (2017), 204.e16
46.
go back to reference E. Sjöberg, M. Augsten, J. Bergh, K. Jirström, A. Östman, Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br. J. Cancer 114, 1117–1124 (2016)PubMedPubMedCentralCrossRef E. Sjöberg, M. Augsten, J. Bergh, K. Jirström, A. Östman, Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br. J. Cancer 114, 1117–1124 (2016)PubMedPubMedCentralCrossRef
47.
go back to reference M. Yao, E. Yu, V. Staggs, F. Fan, N. Cheng, Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Mod. Pathol. 29, 810–823 (2016)PubMedCrossRef M. Yao, E. Yu, V. Staggs, F. Fan, N. Cheng, Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Mod. Pathol. 29, 810–823 (2016)PubMedCrossRef
48.
go back to reference L. Zhao, G. Ji, X. Le, Z. Luo, C. Wang, M. Feng, L. Xu, Y. Zhang, W.B. Lau, B. Lau, Y. Yang, L. Lei, H. Yang, Y. Xuan, Y. Chen, X. Deng, T. Yi, S. Yao, X. Zhao, Y. Wei, S. Zhou, An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 36, 3384–3396 (2017)PubMedCrossRef L. Zhao, G. Ji, X. Le, Z. Luo, C. Wang, M. Feng, L. Xu, Y. Zhang, W.B. Lau, B. Lau, Y. Yang, L. Lei, H. Yang, Y. Xuan, Y. Chen, X. Deng, T. Yi, S. Yao, X. Zhao, Y. Wei, S. Zhou, An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 36, 3384–3396 (2017)PubMedCrossRef
49.
go back to reference N. Kramer, J. Schmöllerl, C. Unger, H. Nivarthi, A. Rudisch, D. Unterleuthner, M. Scherzer, A. Riedl, M. Artaker, I. Crncec, D. Lenhardt, T. Schwarz, B. Prieler, X. Han, M. Hengstschläger, J. Schüler, R. Eferl, R. Moriggl, W. Sommergruber, H. Dolznig, Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36, 5460–5472 (2017)PubMedCrossRef N. Kramer, J. Schmöllerl, C. Unger, H. Nivarthi, A. Rudisch, D. Unterleuthner, M. Scherzer, A. Riedl, M. Artaker, I. Crncec, D. Lenhardt, T. Schwarz, B. Prieler, X. Han, M. Hengstschläger, J. Schüler, R. Eferl, R. Moriggl, W. Sommergruber, H. Dolznig, Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36, 5460–5472 (2017)PubMedCrossRef
50.
go back to reference A. Avgustinova, M. Iravani, D. Robertson, A. Fearns, Q. Gao, P. Klingbeil, A.M. Hanby, V. Speirs, E. Sahai, F. Calvo, C.M. Isacke, Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat. Commun. 7, 10305 (2016)PubMedPubMedCentralCrossRef A. Avgustinova, M. Iravani, D. Robertson, A. Fearns, Q. Gao, P. Klingbeil, A.M. Hanby, V. Speirs, E. Sahai, F. Calvo, C.M. Isacke, Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat. Commun. 7, 10305 (2016)PubMedPubMedCentralCrossRef
51.
go back to reference J.S.K. Chan, M.K. Sng, Z.Q. Teo, H.C. Chong, J.S. Twang, N.S. Tan, Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene 37, 160–173 (2017)PubMedPubMedCentralCrossRef J.S.K. Chan, M.K. Sng, Z.Q. Teo, H.C. Chong, J.S. Twang, N.S. Tan, Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene 37, 160–173 (2017)PubMedPubMedCentralCrossRef
52.
go back to reference M.P. Pinto, W.W. Dye, B.M. Jacobsen, K.B. Horwitz, Malignant stroma increases luminal breast cancer cell proliferation and angiogenesis through platelet-derived growth factor signaling. BMC Cancer 14, 735 (2014) M.P. Pinto, W.W. Dye, B.M. Jacobsen, K.B. Horwitz, Malignant stroma increases luminal breast cancer cell proliferation and angiogenesis through platelet-derived growth factor signaling. BMC Cancer 14, 735 (2014)
53.
go back to reference Y. Kitadai, T. Sasaki, T. Kuwai, T. Nakamura, C.D. Bucana, S.R. Hamilton, I.J. Fidler, Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int. J. Cancer 119, 2567–2574 (2006)PubMedCrossRef Y. Kitadai, T. Sasaki, T. Kuwai, T. Nakamura, C.D. Bucana, S.R. Hamilton, I.J. Fidler, Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int. J. Cancer 119, 2567–2574 (2006)PubMedCrossRef
54.
go back to reference S. Neri, T. Miyashita, H. Hashimoto, Y. Suda, M. Ishibashi, H. Kii, H. Watanabe, T. Kuwata, M. Tsuboi, K. Goto, T. Menju, M. Sonobe, H. Date, A. Ochiai, G. Ishii, Fibroblast-led cancer cell invasion is activated by epithelial–mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma. Cancer Lett. 395, 20–30 (2017)PubMedCrossRef S. Neri, T. Miyashita, H. Hashimoto, Y. Suda, M. Ishibashi, H. Kii, H. Watanabe, T. Kuwata, M. Tsuboi, K. Goto, T. Menju, M. Sonobe, H. Date, A. Ochiai, G. Ishii, Fibroblast-led cancer cell invasion is activated by epithelial–mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma. Cancer Lett. 395, 20–30 (2017)PubMedCrossRef
55.
go back to reference P.S.H. Soon, E. Kim, C.K. Pon, A.J. Gill, K. Moore, A.J. Spillane, D.E. Benn, R.C. Baxter, Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr. Relat. Cancer 20, 1–12 (2013)PubMedCrossRef P.S.H. Soon, E. Kim, C.K. Pon, A.J. Gill, K. Moore, A.J. Spillane, D.E. Benn, R.C. Baxter, Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr. Relat. Cancer 20, 1–12 (2013)PubMedCrossRef
56.
go back to reference A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, R.A. Weinberg, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005)PubMedCrossRef A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, R.A. Weinberg, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005)PubMedCrossRef
57.
go back to reference N.L.E. Harris, C. Vennin, J.R.W. Conway, K.L. Vine, M. Pinese, M.J. Cowley, R.F. Shearer, M.C. Lucas, D. Herrmann, A.H. Allam, M. Pajic, J.P. Morton, A.V. Biankin, M. Ranson, P. Timpson, D.N. Saunders, SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 36, 4288–4298 (2017)PubMedPubMedCentralCrossRef N.L.E. Harris, C. Vennin, J.R.W. Conway, K.L. Vine, M. Pinese, M.J. Cowley, R.F. Shearer, M.C. Lucas, D. Herrmann, A.H. Allam, M. Pajic, J.P. Morton, A.V. Biankin, M. Ranson, P. Timpson, D.N. Saunders, SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 36, 4288–4298 (2017)PubMedPubMedCentralCrossRef
58.
go back to reference N. Perurena, C. Zandueta, S. Martínez-Canarias, H. Moreno, S. Vicent, A.S. Almeida, E. Guruceaga, R.R. Gomis, M. Santisteban, M. Egeblad, EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth. J. Hematol. Oncol. 10, 23 (2017)PubMedPubMedCentralCrossRef N. Perurena, C. Zandueta, S. Martínez-Canarias, H. Moreno, S. Vicent, A.S. Almeida, E. Guruceaga, R.R. Gomis, M. Santisteban, M. Egeblad, EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth. J. Hematol. Oncol. 10, 23 (2017)PubMedPubMedCentralCrossRef
59.
go back to reference S. Busch, A. Acar, Y. Magnusson, P. Gregersson, L. Ryden, G. Landberg, TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34, 27–38 (2015)PubMedCrossRef S. Busch, A. Acar, Y. Magnusson, P. Gregersson, L. Ryden, G. Landberg, TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34, 27–38 (2015)PubMedCrossRef
60.
go back to reference A.M. Hammer, G.M. Sizemore, V.C. Shukla, A. Avendano, S.T. Sizemore, J.J. Chang, R.D. Kladney, M.C. Cuitiño, K.A. Thies, Q. Verfurth, A. Chakravarti, L.D. Yee, G. Leone, J.W. Song, S.N. Ghadiali, M.C. Ostrowski, Stromal PDGFR-α activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia 19, 496–508 (2017)PubMedPubMedCentralCrossRef A.M. Hammer, G.M. Sizemore, V.C. Shukla, A. Avendano, S.T. Sizemore, J.J. Chang, R.D. Kladney, M.C. Cuitiño, K.A. Thies, Q. Verfurth, A. Chakravarti, L.D. Yee, G. Leone, J.W. Song, S.N. Ghadiali, M.C. Ostrowski, Stromal PDGFR-α activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia 19, 496–508 (2017)PubMedPubMedCentralCrossRef
61.
go back to reference Y. Kinugasa, T. Matsui, N. Takakura, CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells 32, 145–156 (2014)PubMedCrossRef Y. Kinugasa, T. Matsui, N. Takakura, CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells 32, 145–156 (2014)PubMedCrossRef
62.
go back to reference B.Y. Owusu, S. Thomas, P. Venukadasula, Z. Han, J.W. Janetka, R.A. Galemmo Jr., L. Klampfer, Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget 8, 63014–63025 (2017)PubMedPubMedCentralCrossRef B.Y. Owusu, S. Thomas, P. Venukadasula, Z. Han, J.W. Janetka, R.A. Galemmo Jr., L. Klampfer, Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget 8, 63014–63025 (2017)PubMedPubMedCentralCrossRef
63.
go back to reference J. Paulsson, L. Rydén, C. Strell, O. Frings, N.P. Tobin, T. Fornander, J. Bergh, G. Landberg, O. Stål, A. Östman, High expression of stromal PDGFRβ is associated with reduced benefit of tamoxifen in breast cancer. J. Pathol. Clin. Res. 3, 38–43 (2016)PubMedPubMedCentralCrossRef J. Paulsson, L. Rydén, C. Strell, O. Frings, N.P. Tobin, T. Fornander, J. Bergh, G. Landberg, O. Stål, A. Östman, High expression of stromal PDGFRβ is associated with reduced benefit of tamoxifen in breast cancer. J. Pathol. Clin. Res. 3, 38–43 (2016)PubMedPubMedCentralCrossRef
64.
go back to reference C.A.S. Corsa, A. Brenot, W.R. Grither, S. Van Hove, A.J. Loza, K. Zhang, S.M. Ponik, Y. Liu, D.G. DeNardo, K.W. Eliceiri, P.J. Keely, G.D. Longmore, The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 15, 2510–2523 (2016)PubMedPubMedCentralCrossRef C.A.S. Corsa, A. Brenot, W.R. Grither, S. Van Hove, A.J. Loza, K. Zhang, S.M. Ponik, Y. Liu, D.G. DeNardo, K.W. Eliceiri, P.J. Keely, G.D. Longmore, The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 15, 2510–2523 (2016)PubMedPubMedCentralCrossRef
65.
go back to reference X. Li, W. Zhu, Z. Chen, L. Luo, J. Huang, F. Zhang, M. Li, Y. Guo, L. Guo, Fibroblast growth factor-inducible 14 regulates cell growth and multidrug resistance of small-cell lung cancer through the nuclear factor-κB pathway. Anti-Cancer Drugs 25, 1152–1164 (2014)PubMedCrossRef X. Li, W. Zhu, Z. Chen, L. Luo, J. Huang, F. Zhang, M. Li, Y. Guo, L. Guo, Fibroblast growth factor-inducible 14 regulates cell growth and multidrug resistance of small-cell lung cancer through the nuclear factor-κB pathway. Anti-Cancer Drugs 25, 1152–1164 (2014)PubMedCrossRef
66.
go back to reference E.M. De Francesco, A.H. Sims, M. Maggiolini, F. Sotgia, M.P. Lisanti, R.B. Clarke, GPER mediates the angiocrine actions induced by IGF1 through the HIF-1alpha/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res. 19, 129 (2017)PubMedPubMedCentralCrossRef E.M. De Francesco, A.H. Sims, M. Maggiolini, F. Sotgia, M.P. Lisanti, R.B. Clarke, GPER mediates the angiocrine actions induced by IGF1 through the HIF-1alpha/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res. 19, 129 (2017)PubMedPubMedCentralCrossRef
67.
go back to reference S.Y. Yeo, S.Y. Ha, K.W. Lee, Y. Cui, Z.T. Yang, Y.H. Xuan, S.H. Kim, Twist1 is highly expressed in cancer-associated fibroblasts of esophageal squamous cell carcinoma with a prognostic significance. Oncotarget 8, 65265–65280 (2017)PubMedPubMedCentralCrossRef S.Y. Yeo, S.Y. Ha, K.W. Lee, Y. Cui, Z.T. Yang, Y.H. Xuan, S.H. Kim, Twist1 is highly expressed in cancer-associated fibroblasts of esophageal squamous cell carcinoma with a prognostic significance. Oncotarget 8, 65265–65280 (2017)PubMedPubMedCentralCrossRef
68.
go back to reference D.E. Kim, M.-G. Procopio, S. Ghosh, S.-H. Jo, S. Goruppi, F. Magliozzi, P. Bordignon, V. Neel, P. Angelino, G.P. Dotto, Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J. Exp. Med. 214, 2349–2368 (2017)PubMedPubMedCentralCrossRef D.E. Kim, M.-G. Procopio, S. Ghosh, S.-H. Jo, S. Goruppi, F. Magliozzi, P. Bordignon, V. Neel, P. Angelino, G.P. Dotto, Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J. Exp. Med. 214, 2349–2368 (2017)PubMedPubMedCentralCrossRef
69.
go back to reference W.N. Brennen, D.M. Rosen, H. Wang, J.T. Isaacs, S.R. Denmeade, Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 104, 1320–1334 (2012)PubMedPubMedCentralCrossRef W.N. Brennen, D.M. Rosen, H. Wang, J.T. Isaacs, S.R. Denmeade, Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 104, 1320–1334 (2012)PubMedPubMedCentralCrossRef
70.
go back to reference U.E. Martinez-Outschoorn, M.P. Lisanti, F. Sotgia, Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25, 47–60 (2014)PubMedCrossRef U.E. Martinez-Outschoorn, M.P. Lisanti, F. Sotgia, Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin. Cancer Biol. 25, 47–60 (2014)PubMedCrossRef
71.
go back to reference B.B. Patel, E. Ackerstaff, I.S. Serganova, J.E. Kerrigan, R.G. Blasberg, J.A. Koutcher, D. Banerjee, Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp. Cell Res. 352, 20–33 (2017)PubMedPubMedCentralCrossRef B.B. Patel, E. Ackerstaff, I.S. Serganova, J.E. Kerrigan, R.G. Blasberg, J.A. Koutcher, D. Banerjee, Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp. Cell Res. 352, 20–33 (2017)PubMedPubMedCentralCrossRef
72.
go back to reference B. Chiavarina, D. Whitaker-Menezes, U.E. Martinez-Outschoorn, A.K. Witkiewicz, R. Birbe, A. Howell, R.G. Pestell, J. Smith, R. Daniel, F. Sotgia, M.P. Lisanti, Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol. Ther. 12, 1101–1113 (2011)PubMedPubMedCentralCrossRef B. Chiavarina, D. Whitaker-Menezes, U.E. Martinez-Outschoorn, A.K. Witkiewicz, R. Birbe, A. Howell, R.G. Pestell, J. Smith, R. Daniel, F. Sotgia, M.P. Lisanti, Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol. Ther. 12, 1101–1113 (2011)PubMedPubMedCentralCrossRef
73.
go back to reference F. Lopes-Coelho, S. Andre, A. Felix, J. Serpa, Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol. Cell. Endocrinol. 462, 93–106 (2018)PubMedCrossRef F. Lopes-Coelho, S. Andre, A. Felix, J. Serpa, Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol. Cell. Endocrinol. 462, 93–106 (2018)PubMedCrossRef
74.
go back to reference X. Tang, Y. Hou, G. Yang, X. Wang, S. Tang, Y.E. Du, L. Yang, T. Yu, H. Zhang, M. Zhou, S. Wen, L. Xu, M. Liu, Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 23, 132–145 (2016) X. Tang, Y. Hou, G. Yang, X. Wang, S. Tang, Y.E. Du, L. Yang, T. Yu, H. Zhang, M. Zhou, S. Wen, L. Xu, M. Liu, Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 23, 132–145 (2016)
75.
go back to reference Y. Liu, J. Zhang, X. Sun, Q. Su, C. You, Down-regulation of miR-29b in carcinoma associated fibroblasts promotes cell growth and metastasis of breast cancer. Oncotarget 8, 39559–39570 (2017)PubMedPubMedCentral Y. Liu, J. Zhang, X. Sun, Q. Su, C. You, Down-regulation of miR-29b in carcinoma associated fibroblasts promotes cell growth and metastasis of breast cancer. Oncotarget 8, 39559–39570 (2017)PubMedPubMedCentral
76.
go back to reference C.J. Clarke, T.J. Berg, J. Birch, D. Ennis, L. Mitchell, C. Cloix, A. Campbell, D. Sumpton, C. Nixon, K. Campbell, V.L. Bridgeman, P.B. Vermeulen, S. Foo, E. Kostaras, J.L. Jones, L. Haywood, E. Pulleine, H. Yin, D. Strathdee, O. Sansom, K. Blyth, I. McNeish, S. Zanivan, A.R. Reynolds, J.C. Norman, The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol. 26, 755–765 (2016)PubMedPubMedCentralCrossRef C.J. Clarke, T.J. Berg, J. Birch, D. Ennis, L. Mitchell, C. Cloix, A. Campbell, D. Sumpton, C. Nixon, K. Campbell, V.L. Bridgeman, P.B. Vermeulen, S. Foo, E. Kostaras, J.L. Jones, L. Haywood, E. Pulleine, H. Yin, D. Strathdee, O. Sansom, K. Blyth, I. McNeish, S. Zanivan, A.R. Reynolds, J.C. Norman, The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol. 26, 755–765 (2016)PubMedPubMedCentralCrossRef
77.
go back to reference K.H. Vousden, Lane D.P. p53 in health and disease. Nat. Rev. 8, 275–283 (2007)CrossRef K.H. Vousden, Lane D.P. p53 in health and disease. Nat. Rev. 8, 275–283 (2007)CrossRef
78.
79.
go back to reference M.S. Song, L. Salmena, P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012)PubMedCrossRef M.S. Song, L. Salmena, P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012)PubMedCrossRef
80.
go back to reference M.G. Procopio, C. Laszlo, D. Al Labban, D.E. Kim, P. Bordignon, S.H. Jo, S. Goruppi, E. Menietti, Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015)PubMedPubMedCentralCrossRef M.G. Procopio, C. Laszlo, D. Al Labban, D.E. Kim, P. Bordignon, S.H. Jo, S. Goruppi, E. Menietti, Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015)PubMedPubMedCentralCrossRef
81.
go back to reference P. Dauer, X. Zhao, V.K. Gupta, N. Sharma, K. Kesh, P. Gnamlin, Inactivation of Cancer-associated-fibroblasts disrupts oncogenic signaling in pancreatic Cancer cells and promotes its regression. Cancer Res. 78, 1321–1333 (2018)PubMedCrossRef P. Dauer, X. Zhao, V.K. Gupta, N. Sharma, K. Kesh, P. Gnamlin, Inactivation of Cancer-associated-fibroblasts disrupts oncogenic signaling in pancreatic Cancer cells and promotes its regression. Cancer Res. 78, 1321–1333 (2018)PubMedCrossRef
82.
go back to reference Y. Hayashi, M. Tsujii, T. Kodama, T. Akasaka, J. Kondo, H. Hikita, T. Inoue, p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis 37, 972–984 (2016)PubMedCrossRef Y. Hayashi, M. Tsujii, T. Kodama, T. Akasaka, J. Kondo, H. Hikita, T. Inoue, p53 functional deficiency in human colon cancer cells promotes fibroblast-mediated angiogenesis and tumor growth. Carcinogenesis 37, 972–984 (2016)PubMedCrossRef
83.
go back to reference J.O. Schmid, M. Dong, S. Haubeiss, G. Friedel, S. Bode, A. Grabner, G. Ott, T.E. Mürdter, Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin. Cancer Res. 72, 5824–5832 (2012)PubMedCrossRef J.O. Schmid, M. Dong, S. Haubeiss, G. Friedel, S. Bode, A. Grabner, G. Ott, T.E. Mürdter, Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin. Cancer Res. 72, 5824–5832 (2012)PubMedCrossRef
84.
go back to reference C.P. Liao, H. Adisetiyo, M. Liang, P. Roy-Burman, Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 70, 7294–7303 (2010)PubMedPubMedCentralCrossRef C.P. Liao, H. Adisetiyo, M. Liang, P. Roy-Burman, Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 70, 7294–7303 (2010)PubMedPubMedCentralCrossRef
85.
go back to reference A.J. Trimboli, C.Z. Cantemir-Stone, F. Li, J.A. Wallace, A. Merchant, N. Creasap, Pten in stromal fibroblasts suppresses mammary epithelial tumors. Nature 461, 1084–1091 (2009)PubMedPubMedCentralCrossRef A.J. Trimboli, C.Z. Cantemir-Stone, F. Li, J.A. Wallace, A. Merchant, N. Creasap, Pten in stromal fibroblasts suppresses mammary epithelial tumors. Nature 461, 1084–1091 (2009)PubMedPubMedCentralCrossRef
86.
go back to reference G.M. Sizemore, H.A.M. Balakrishnan, K.A. Thies, A.J. Trimboli, J.A. Wallace, Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene 36, 2297–2308 (2017)PubMedCrossRef G.M. Sizemore, H.A.M. Balakrishnan, K.A. Thies, A.J. Trimboli, J.A. Wallace, Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene 36, 2297–2308 (2017)PubMedCrossRef
88.
go back to reference L. Bochet, C. Lehuede, S. Dauvillier, Y.Y. Wang, B. Dirat, V. Laurent, C. Dray, R. Guiet, I. Maridonneau-Parini, S. Le Gonidec, B. Couderc, G. Escourrou, P. Valet, C. Muller, Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013)PubMedCrossRef L. Bochet, C. Lehuede, S. Dauvillier, Y.Y. Wang, B. Dirat, V. Laurent, C. Dray, R. Guiet, I. Maridonneau-Parini, S. Le Gonidec, B. Couderc, G. Escourrou, P. Valet, C. Muller, Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013)PubMedCrossRef
89.
go back to reference K.M. Nieman, I.L. Romero, B. Van Houten, E. Lengyel, Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta 1831, 1533–1541 (2013) K.M. Nieman, I.L. Romero, B. Van Houten, E. Lengyel, Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta 1831, 1533–1541 (2013)
90.
go back to reference J. Zhang, L. Zhang, C. Li, C. Yang, L. Li, S. Song, H. Wu, F. Liu, L. Wang, J. Gu, LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell. Oncol. 41, 73–84 (2018)CrossRef J. Zhang, L. Zhang, C. Li, C. Yang, L. Li, S. Song, H. Wu, F. Liu, L. Wang, J. Gu, LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell. Oncol. 41, 73–84 (2018)CrossRef
91.
go back to reference Y. Lee, W.H. Jung, J.S. Koo, Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res. Treat. 153, 323–335 (2015)PubMedCrossRef Y. Lee, W.H. Jung, J.S. Koo, Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res. Treat. 153, 323–335 (2015)PubMedCrossRef
92.
go back to reference C.-K. Huang, P.-H. Chang, W.-H. Kuo, C.-L. Chen, Y.-M. Jeng, K.-J. Chang, J.-Y. Shew, C.-M. Hu, W.-H. Lee, Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat. Commun. 8, 14706 (2017) C.-K. Huang, P.-H. Chang, W.-H. Kuo, C.-L. Chen, Y.-M. Jeng, K.-J. Chang, J.-Y. Shew, C.-M. Hu, W.-H. Lee, Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat. Commun. 8, 14706 (2017)
93.
go back to reference Z. Jia, Y. Liu, S. Cui, Adiponectin induces breast cancer cell migration and growth factor expression. Cell Biochem. Biophys. 70, 1239–1245 (2014)PubMedCrossRef Z. Jia, Y. Liu, S. Cui, Adiponectin induces breast cancer cell migration and growth factor expression. Cell Biochem. Biophys. 70, 1239–1245 (2014)PubMedCrossRef
94.
go back to reference A. Yao-Borengasser, B. Monzavi-Karbassi, R.A. Hedges, L.J. Rogers, S.A. Kadlubar, T. Kieber-Emmons, Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol. Rep. 33, 2689–2694 (2015)PubMedPubMedCentralCrossRef A. Yao-Borengasser, B. Monzavi-Karbassi, R.A. Hedges, L.J. Rogers, S.A. Kadlubar, T. Kieber-Emmons, Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol. Rep. 33, 2689–2694 (2015)PubMedPubMedCentralCrossRef
95.
go back to reference C. Wang, C. Gao, K. Meng, H. Qiao, Y. Wang, Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One 10, e0119348 (2015)PubMedPubMedCentralCrossRef C. Wang, C. Gao, K. Meng, H. Qiao, Y. Wang, Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One 10, e0119348 (2015)PubMedPubMedCentralCrossRef
96.
go back to reference X. Catteau, P. Simon, J.-C. NoëL, Stromal expression of matrix metalloproteinase 2 in cancer-associated fibroblasts is strongly related to human epidermal growth factor receptor 2 status in invasive breast carcinoma. Mol. Clin. Oncol. 4, 375–378 (2016)PubMedCrossRef X. Catteau, P. Simon, J.-C. NoëL, Stromal expression of matrix metalloproteinase 2 in cancer-associated fibroblasts is strongly related to human epidermal growth factor receptor 2 status in invasive breast carcinoma. Mol. Clin. Oncol. 4, 375–378 (2016)PubMedCrossRef
97.
go back to reference V. D’Esposito, F. Passaretti, A. Hammarstedt, D. Liguoro, D. Terracciano, G. Molea, L. Canta, C. Miele, U. Smith, F. Beguinot, P. Formisano, Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55, 2811–2822 (2012)PubMedPubMedCentralCrossRef V. D’Esposito, F. Passaretti, A. Hammarstedt, D. Liguoro, D. Terracciano, G. Molea, L. Canta, C. Miele, U. Smith, F. Beguinot, P. Formisano, Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55, 2811–2822 (2012)PubMedPubMedCentralCrossRef
98.
go back to reference L. Bochet, A. Meulle, S. Imbert, B. Salles, P. Valet, C. Muller, Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem. Biophys. Res. Commun. 411, 102–106 (2011)PubMedCrossRef L. Bochet, A. Meulle, S. Imbert, B. Salles, P. Valet, C. Muller, Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem. Biophys. Res. Commun. 411, 102–106 (2011)PubMedCrossRef
99.
go back to reference K. Fujisaki, H. Fujimoto, T. Sangai, T. Nagashima, M. Sakakibara, N. Shiina, M. Kuroda, Y. Aoyagi, M. Miyazaki, Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res. Treat. 150, 255–263 (2015)PubMedCrossRef K. Fujisaki, H. Fujimoto, T. Sangai, T. Nagashima, M. Sakakibara, N. Shiina, M. Kuroda, Y. Aoyagi, M. Miyazaki, Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res. Treat. 150, 255–263 (2015)PubMedCrossRef
100.
go back to reference V. D'Esposito, D. Liguoro, M.R. Ambrosio, F. Collina, M. Cantile, R. Spinelli, G.A. Raciti, C. Miele, R. Valentino, P. Campiglia, M. De Laurentiis, M. Di Bonito, G. Botti, R. Franco, F. Beguinot, P. Formisano, Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget 7, 24495–24509 (2016) V. D'Esposito, D. Liguoro, M.R. Ambrosio, F. Collina, M. Cantile, R. Spinelli, G.A. Raciti, C. Miele, R. Valentino, P. Campiglia, M. De Laurentiis, M. Di Bonito, G. Botti, R. Franco, F. Beguinot, P. Formisano, Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget 7, 24495–24509 (2016)
101.
go back to reference M.N. Duong, A. Cleret, E.L. Matera, K. Chettab, D. Mathe, S. Valsesia-Wittmann, B. Clemenceau, C. Dumontet, Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 17, 57 (2015)PubMedPubMedCentralCrossRef M.N. Duong, A. Cleret, E.L. Matera, K. Chettab, D. Mathe, S. Valsesia-Wittmann, B. Clemenceau, C. Dumontet, Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 17, 57 (2015)PubMedPubMedCentralCrossRef
102.
go back to reference D. Katoh, M. Nishizuka, S. Osada, M. Imagawa, Fad104, a positive regulator of adipocyte differentiation, suppresses invasion and metastasis of melanoma cells by inhibition of STAT3 activity. PLoS One 10, e0117197 (2015)PubMedPubMedCentralCrossRef D. Katoh, M. Nishizuka, S. Osada, M. Imagawa, Fad104, a positive regulator of adipocyte differentiation, suppresses invasion and metastasis of melanoma cells by inhibition of STAT3 activity. PLoS One 10, e0117197 (2015)PubMedPubMedCentralCrossRef
103.
go back to reference A.L. Ribeiro, C. Kaid, P.B.G. Silva, B.A. Cortez, O.K. Okamoto, Inhibition of lysyl oxidases impairs migration and angiogenic properties of tumor-associated pericytes. Stem Cells Int. 4972078, 2017 (2017) A.L. Ribeiro, C. Kaid, P.B.G. Silva, B.A. Cortez, O.K. Okamoto, Inhibition of lysyl oxidases impairs migration and angiogenic properties of tumor-associated pericytes. Stem Cells Int. 4972078, 2017 (2017)
104.
go back to reference K. Hosaka, Y. Yang, T. Seki, C. Fischer, O. Dubey, E. Fredlund, J. Hartman, P. Religa, H. Morikawa, Y. Ishii, M. Sasahara, O. Larsson, G. Cossu, R. Cao, S. Lim, Y. Cao, Pericyte–fibroblast transition promotes tumor growth and metastasis. Proc. Natl. Acad. Sci. U. S. A. 113, E5618–E5627 (2016)PubMedPubMedCentralCrossRef K. Hosaka, Y. Yang, T. Seki, C. Fischer, O. Dubey, E. Fredlund, J. Hartman, P. Religa, H. Morikawa, Y. Ishii, M. Sasahara, O. Larsson, G. Cossu, R. Cao, S. Lim, Y. Cao, Pericyte–fibroblast transition promotes tumor growth and metastasis. Proc. Natl. Acad. Sci. U. S. A. 113, E5618–E5627 (2016)PubMedPubMedCentralCrossRef
105.
go back to reference J. Hong, N.P. Tobin, H. Rundqvist, T. Li, M. Lavergne, Y. García-Ibáñez, H. Qin, J. Paulsson, M. Zeitelhofer, M.Z. Adzemovic, I. Nilsson, P. Roswall, J. Hartman, R.S. Johnson, A. Östman, J. Bergh, M. Poljakovic, G. Genové, Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J. Natl. Cancer Inst. 107, djv209 (2015)PubMedCrossRef J. Hong, N.P. Tobin, H. Rundqvist, T. Li, M. Lavergne, Y. García-Ibáñez, H. Qin, J. Paulsson, M. Zeitelhofer, M.Z. Adzemovic, I. Nilsson, P. Roswall, J. Hartman, R.S. Johnson, A. Östman, J. Bergh, M. Poljakovic, G. Genové, Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J. Natl. Cancer Inst. 107, djv209 (2015)PubMedCrossRef
106.
go back to reference J.H. Trevino-Villarreal, R. Sepulveda, D.A. Cotanche, R.A. Rogers, Effect of pericytes on epithelial-to-mesenchymal transition in melanoma. J. Clin. Oncol. 30, 84–84 (2012)CrossRef J.H. Trevino-Villarreal, R. Sepulveda, D.A. Cotanche, R.A. Rogers, Effect of pericytes on epithelial-to-mesenchymal transition in melanoma. J. Clin. Oncol. 30, 84–84 (2012)CrossRef
107.
go back to reference M. Teichert, L. Milde, A. Holm, L. Stanicek, N. Gengenbacher, S. Savant, T. Ruckdeschel, Z. Hasanov, K. Srivastava, J. Hu, S. Hertel, A. Bartol, K. Schlereth, H.G. Augustin, Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat. Commun. 8, 16106 (2017)PubMedPubMedCentralCrossRef M. Teichert, L. Milde, A. Holm, L. Stanicek, N. Gengenbacher, S. Savant, T. Ruckdeschel, Z. Hasanov, K. Srivastava, J. Hu, S. Hertel, A. Bartol, K. Schlereth, H.G. Augustin, Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat. Commun. 8, 16106 (2017)PubMedPubMedCentralCrossRef
108.
go back to reference L.E. Reynolds, G. D'Amico, T. Lechertier, A. Papachristodoulou, J.M. Muñoz-Félix, A. De Arcangelis, M. Baker, B. Serrels, K.M. Hodivala-Dilke, Dual role of pericyte α6β1-integrin in tumour blood vessels. J. Cell Sci. 130, 1583–1595 (2017) L.E. Reynolds, G. D'Amico, T. Lechertier, A. Papachristodoulou, J.M. Muñoz-Félix, A. De Arcangelis, M. Baker, B. Serrels, K.M. Hodivala-Dilke, Dual role of pericyte α6β1-integrin in tumour blood vessels. J. Cell Sci. 130, 1583–1595 (2017)
109.
go back to reference D. Sinha, L. Chong, J. George, H. Schlüter, S. Mönchgesang, S. Mills, J. Li, C. Parish, D. Bowtell, P. Kaur, Pericytes promote malignant ovarian cancer progression in mice and predict poor prognosis in serous ovarian cancer patients. Clin. Cancer Res. 22, 1813–1824 (2015)PubMedCrossRef D. Sinha, L. Chong, J. George, H. Schlüter, S. Mönchgesang, S. Mills, J. Li, C. Parish, D. Bowtell, P. Kaur, Pericytes promote malignant ovarian cancer progression in mice and predict poor prognosis in serous ovarian cancer patients. Clin. Cancer Res. 22, 1813–1824 (2015)PubMedCrossRef
110.
go back to reference A. Chavez-Gonzalez, B. Bakhshinejad, K. Pakravan, M.L. Guzman, S. Babashah, Novel strategies for targeting leukemia stem cells: Sounding the death knell for blood cancer. Cell. Oncol. 40, 1–20 (2017)CrossRef A. Chavez-Gonzalez, B. Bakhshinejad, K. Pakravan, M.L. Guzman, S. Babashah, Novel strategies for targeting leukemia stem cells: Sounding the death knell for blood cancer. Cell. Oncol. 40, 1–20 (2017)CrossRef
111.
go back to reference B. Leyh, A. Dittmer, T. Lange, J.W. Martens, J. Dittmer, Stromal cells promote anti-estrogen resistance of breast cancer cells through an insulin-like growth factor binding protein 5 (IGFBP5)/B-cell leukemia/lymphoma 3 (Bcl-3) axis. Oncotarget 6, 39307–39328 (2015)PubMedPubMedCentralCrossRef B. Leyh, A. Dittmer, T. Lange, J.W. Martens, J. Dittmer, Stromal cells promote anti-estrogen resistance of breast cancer cells through an insulin-like growth factor binding protein 5 (IGFBP5)/B-cell leukemia/lymphoma 3 (Bcl-3) axis. Oncotarget 6, 39307–39328 (2015)PubMedPubMedCentralCrossRef
112.
go back to reference R.D. Guardia, B. Lopez-Millan, J.R. Lavoie, C. Bueno, J. Castaño, M. Gómez-Casares, S. Vives, L. Palomo, M. Juan, J. Delgado, M.L. Blanco, J. Nomdedeu, A. Chaparro, J.L. Fuster, E. Anguita, M. Rosu-Myles, P. Menéndez, Detailed characterization of mesenchymal stem/stromal cells from a large cohort of AML patients demonstrates a definitive link to treatment outcomes. Stem Cell Reports 8, 1573–1586 (2017)CrossRef R.D. Guardia, B. Lopez-Millan, J.R. Lavoie, C. Bueno, J. Castaño, M. Gómez-Casares, S. Vives, L. Palomo, M. Juan, J. Delgado, M.L. Blanco, J. Nomdedeu, A. Chaparro, J.L. Fuster, E. Anguita, M. Rosu-Myles, P. Menéndez, Detailed characterization of mesenchymal stem/stromal cells from a large cohort of AML patients demonstrates a definitive link to treatment outcomes. Stem Cell Reports 8, 1573–1586 (2017)CrossRef
113.
go back to reference K.M. McAndrews, D.J. McGrail, N. Ravikumar, M.R. Dawson, Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci. Rep. 5, 16941 (2015) K.M. McAndrews, D.J. McGrail, N. Ravikumar, M.R. Dawson, Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci. Rep. 5, 16941 (2015)
114.
go back to reference H.H. Wang, Y.L. Cui, N.G. Zaorsky, J. Lan, L. Deng, X.L. Zeng, Z.Q. Wu, Z. Tao, W.H. Guo, Q.X. Wang, L.J. Zhao, Z.Y. Yuan, Y. Lu, P. Wang, M.B. Meng, Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett. 375, 349–359 (2016) H.H. Wang, Y.L. Cui, N.G. Zaorsky, J. Lan, L. Deng, X.L. Zeng, Z.Q. Wu, Z. Tao, W.H. Guo, Q.X. Wang, L.J. Zhao, Z.Y. Yuan, Y. Lu, P. Wang, M.B. Meng, Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett. 375, 349–359 (2016)
115.
go back to reference T.L. Watts, R. Cui, P. Szaniszlo, V.A. Resto, D.W. Powell, I.V. Pinchuk, PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment. J. Transl. Med. 14, 337 (2016)PubMedPubMedCentralCrossRef T.L. Watts, R. Cui, P. Szaniszlo, V.A. Resto, D.W. Powell, I.V. Pinchuk, PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment. J. Transl. Med. 14, 337 (2016)PubMedPubMedCentralCrossRef
116.
go back to reference F. Ma, D. Chen, F. Chen, Y. Chi, Z. Han, X. Feng, X. Li, Z. Han, Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44+/CD24- cells. Cell Transplant. 24, 2585–2599 (2015)PubMedCrossRef F. Ma, D. Chen, F. Chen, Y. Chi, Z. Han, X. Feng, X. Li, Z. Han, Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44+/CD24- cells. Cell Transplant. 24, 2585–2599 (2015)PubMedCrossRef
117.
go back to reference P.F. Yu, Y. Huang, C.L. Xu, L.Y. Lin, Y.Y. Han, W.H. Sun, G.H. Hu, A.B. Rabson, Y. Wang, Y.F. Shi, Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis. Oncogene 36, 840–849 (2017)PubMedCrossRef P.F. Yu, Y. Huang, C.L. Xu, L.Y. Lin, Y.Y. Han, W.H. Sun, G.H. Hu, A.B. Rabson, Y. Wang, Y.F. Shi, Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis. Oncogene 36, 840–849 (2017)PubMedCrossRef
119.
go back to reference A. Scholz, P.N. Harter, S. Cremer, B.H. Yalcin, S. Gurnik, M. Yamaji, M. Di Tacchio, K. Sommer, P. Baumgarten, O. Bahr, J.P. Steinbach, J. Trojan, M. Glas, U. Herrlinger, D. Krex, M. Meinhardt, A. Weyerbrock, M. Timmer, R. Goldbrunner, M. Deckert, C. Braun, J. Schittenhelm, J.T. Frueh, E. Ullrich, M. Mittelbronn, K.H. Plate, Y. Reiss, Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 8, 39–57 (2016)PubMedCrossRef A. Scholz, P.N. Harter, S. Cremer, B.H. Yalcin, S. Gurnik, M. Yamaji, M. Di Tacchio, K. Sommer, P. Baumgarten, O. Bahr, J.P. Steinbach, J. Trojan, M. Glas, U. Herrlinger, D. Krex, M. Meinhardt, A. Weyerbrock, M. Timmer, R. Goldbrunner, M. Deckert, C. Braun, J. Schittenhelm, J.T. Frueh, E. Ullrich, M. Mittelbronn, K.H. Plate, Y. Reiss, Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 8, 39–57 (2016)PubMedCrossRef
120.
go back to reference M.-Y. Hsu, M.H. Yang, C.I. Schnegg, S. Hwang, B. Ryu, R.M. Alani, Notch3 signaling-mediated melanoma–endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab. Invest. 97, 725–736 (2017)PubMedPubMedCentralCrossRef M.-Y. Hsu, M.H. Yang, C.I. Schnegg, S. Hwang, B. Ryu, R.M. Alani, Notch3 signaling-mediated melanoma–endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab. Invest. 97, 725–736 (2017)PubMedPubMedCentralCrossRef
121.
go back to reference E. Wieland, J. Rodriguez-Vita, S.S. Liebler, C. Mogler, I. Moll, S.E. Herberich, E. Espinet, E. Herpel, A. Menuchin, J. Chang-Claude, M. Hoffmeister, C. Gebhardt, H. Brenner, A. Trumpp, C.W. Siebel, M. Hecker, J. Utikal, D. Sprinzak, A. Fischer, Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31, 355–367 (2017)PubMedCrossRef E. Wieland, J. Rodriguez-Vita, S.S. Liebler, C. Mogler, I. Moll, S.E. Herberich, E. Espinet, E. Herpel, A. Menuchin, J. Chang-Claude, M. Hoffmeister, C. Gebhardt, H. Brenner, A. Trumpp, C.W. Siebel, M. Hecker, J. Utikal, D. Sprinzak, A. Fischer, Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31, 355–367 (2017)PubMedCrossRef
122.
go back to reference B. Balinisteanu, A.M. Cimpean, E. Melnic, M. Coculescu, R.A. Ceausu, M. Raica, Crosstalk between tumor blood vessels heterogeneity and hormonal profile of pituitary adenomas: Evidence and controversies. Anticancer Res. 34, 5413–5420 (2014)PubMed B. Balinisteanu, A.M. Cimpean, E. Melnic, M. Coculescu, R.A. Ceausu, M. Raica, Crosstalk between tumor blood vessels heterogeneity and hormonal profile of pituitary adenomas: Evidence and controversies. Anticancer Res. 34, 5413–5420 (2014)PubMed
123.
go back to reference P. Ghiabi, J. Jiang, J. Pasquier, M. Maleki, N. Abu-Kaoud, N. Halabi, B.S. Guerrouahen, S. Rafii, A. Rafii, Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J. Transl. Med. 13, 27 (2015)PubMedPubMedCentralCrossRef P. Ghiabi, J. Jiang, J. Pasquier, M. Maleki, N. Abu-Kaoud, N. Halabi, B.S. Guerrouahen, S. Rafii, A. Rafii, Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J. Transl. Med. 13, 27 (2015)PubMedPubMedCentralCrossRef
124.
go back to reference R. Wilson, C. Espinosa-Diez, N. Kanner, N. Chatterjee, R. Ruhl, C. Hipfinger, S.J. Advani, J. Li, O.F. Khan, A. Franovic, S.M. Weis, S. Kumar, L.M. Coussens, D.G. Anderson, C.C. Chen, D.A. Cheresh, S. Anand, MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat. Commun. 7, 13597 (2016)PubMedPubMedCentralCrossRef R. Wilson, C. Espinosa-Diez, N. Kanner, N. Chatterjee, R. Ruhl, C. Hipfinger, S.J. Advani, J. Li, O.F. Khan, A. Franovic, S.M. Weis, S. Kumar, L.M. Coussens, D.G. Anderson, C.C. Chen, D.A. Cheresh, S. Anand, MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat. Commun. 7, 13597 (2016)PubMedPubMedCentralCrossRef
125.
go back to reference K. Gupta, R. Metgud, J. Gupta, Evaluation of stromal myofibroblasts in oral leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma - an immunohistochemical study. J. Cancer Res. Ther. 11, 893–898 (2015)PubMedCrossRef K. Gupta, R. Metgud, J. Gupta, Evaluation of stromal myofibroblasts in oral leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma - an immunohistochemical study. J. Cancer Res. Ther. 11, 893–898 (2015)PubMedCrossRef
126.
go back to reference M. Chaudhary, A.R. Gadbail, G. Vidhale, M.P. Mankar, S.M. Gondivkar, M. Gawande, S. Patil, Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa. Head Neck Pathol. 6, 305–313 (2012)PubMedPubMedCentralCrossRef M. Chaudhary, A.R. Gadbail, G. Vidhale, M.P. Mankar, S.M. Gondivkar, M. Gawande, S. Patil, Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa. Head Neck Pathol. 6, 305–313 (2012)PubMedPubMedCentralCrossRef
127.
go back to reference M. Mehdipour, M. Shahidi, S. Manifar, S. Jafari, F. Mashhadi Abbas, M. Barati, H. Mortazavi, M. Shirkhoda, A. Farzanegan, Z. Elmi Rankohi, Diagnostic and prognostic relevance of salivary microRNA-21, −125a, −31 and -200a levels in patients with oral lichen planus - a short report. Cell. Oncol. 41, 329–334 (2018)CrossRef M. Mehdipour, M. Shahidi, S. Manifar, S. Jafari, F. Mashhadi Abbas, M. Barati, H. Mortazavi, M. Shirkhoda, A. Farzanegan, Z. Elmi Rankohi, Diagnostic and prognostic relevance of salivary microRNA-21, −125a, −31 and -200a levels in patients with oral lichen planus - a short report. Cell. Oncol. 41, 329–334 (2018)CrossRef
128.
go back to reference R. Tamamura, H. Nagatsuka, C.H. Siar, N. Katase, I. Naito, Y. Sado, N. Nagai, Comparative analysis of basal lamina type IV collagen α chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem. 115, 113–119 (2013)PubMedCrossRef R. Tamamura, H. Nagatsuka, C.H. Siar, N. Katase, I. Naito, Y. Sado, N. Nagai, Comparative analysis of basal lamina type IV collagen α chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem. 115, 113–119 (2013)PubMedCrossRef
129.
go back to reference H.-X. Fan, H.-X. Li, D. Chen, Z.-X. Gao, J.-H. Zheng, Changes in the expression of MMP2, MMP9, and ColIV in stromal cells in oral squamous tongue cell carcinoma: Relationships and prognostic implications. J. Exp. Clin. Cancer Res. 31, 90 (2012)PubMedPubMedCentralCrossRef H.-X. Fan, H.-X. Li, D. Chen, Z.-X. Gao, J.-H. Zheng, Changes in the expression of MMP2, MMP9, and ColIV in stromal cells in oral squamous tongue cell carcinoma: Relationships and prognostic implications. J. Exp. Clin. Cancer Res. 31, 90 (2012)PubMedPubMedCentralCrossRef
130.
go back to reference P. Le Bars, P. Piloquet, A. Daniel, B. Giumelli, Immunohistochemical localization of type IV collagen and laminin (alpha1) in denture stomatitis. J. Oral Pathol. Med. 30, 98–103 (2001)PubMedCrossRef P. Le Bars, P. Piloquet, A. Daniel, B. Giumelli, Immunohistochemical localization of type IV collagen and laminin (alpha1) in denture stomatitis. J. Oral Pathol. Med. 30, 98–103 (2001)PubMedCrossRef
131.
go back to reference F.B. Galateau-Salle, R.E. Luna, K. Horiba, M.N. Sheppard, T. Hayashi, M.V. Fleming, T.V. Colby, W. Bennett, C.C. Harris, W.G. Stetler-Stevenson, L. Liotta, V.J. Ferrans, W.D. Travis, Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Hum. Pathol. 31, 296–305 (2000)PubMedCrossRef F.B. Galateau-Salle, R.E. Luna, K. Horiba, M.N. Sheppard, T. Hayashi, M.V. Fleming, T.V. Colby, W. Bennett, C.C. Harris, W.G. Stetler-Stevenson, L. Liotta, V.J. Ferrans, W.D. Travis, Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Hum. Pathol. 31, 296–305 (2000)PubMedCrossRef
132.
go back to reference M. Sathyakumar, G. Sriram, T.R. Saraswathi, B. Sivapathasundharam, Immunohistochemical evaluation of mast cells and vascular endothelial proliferation in oral precancerous lesion-leukoplakia. J. Oral Maxillofac. Pathol. 16, 343–348 (2012)PubMedPubMedCentralCrossRef M. Sathyakumar, G. Sriram, T.R. Saraswathi, B. Sivapathasundharam, Immunohistochemical evaluation of mast cells and vascular endothelial proliferation in oral precancerous lesion-leukoplakia. J. Oral Maxillofac. Pathol. 16, 343–348 (2012)PubMedPubMedCentralCrossRef
133.
go back to reference S. Ramsridhar, M. Narasimhan, Immunohistochemical evaluation of mast cells in leukoplakia and oral squamous cell carcinoma. J. Clin. Diagn. Res. 10, ZC100–ZC103 (2016)PubMedPubMedCentral S. Ramsridhar, M. Narasimhan, Immunohistochemical evaluation of mast cells in leukoplakia and oral squamous cell carcinoma. J. Clin. Diagn. Res. 10, ZC100–ZC103 (2016)PubMedPubMedCentral
134.
go back to reference M. Kinra, K. Ramalingam, A. Sarkar, F. Rehman, K.L. Girish, Comparison of mast cell count and mast cell density in normal mucosa, oral leukoplakia, oral lichen planus, oral submucous fibrosis and oral squamous cell carcinoma–a study on 50cases. JPSI 1, 4–11 (2012) M. Kinra, K. Ramalingam, A. Sarkar, F. Rehman, K.L. Girish, Comparison of mast cell count and mast cell density in normal mucosa, oral leukoplakia, oral lichen planus, oral submucous fibrosis and oral squamous cell carcinoma–a study on 50cases. JPSI 1, 4–11 (2012)
135.
go back to reference S. Nayak, M.M. Goel, A. Makker, V. Bhatia, S. Chandra, S. Kumar, S.P. Agarwal, Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS One 10, e0138801 (2015)PubMedPubMedCentralCrossRef S. Nayak, M.M. Goel, A. Makker, V. Bhatia, S. Chandra, S. Kumar, S.P. Agarwal, Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS One 10, e0138801 (2015)PubMedPubMedCentralCrossRef
136.
137.
go back to reference S.P. Kerkar, N.P. Restifo, Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 72, 3125–3130 (2012)PubMedCrossRef S.P. Kerkar, N.P. Restifo, Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 72, 3125–3130 (2012)PubMedCrossRef
138.
go back to reference H. Qin, C. Zhao, Y. Sun, J. Ren, X. Qu, Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo. J. Am. Chem. Soc. 139, 16201–16209 (2017)PubMedCrossRef H. Qin, C. Zhao, Y. Sun, J. Ren, X. Qu, Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo. J. Am. Chem. Soc. 139, 16201–16209 (2017)PubMedCrossRef
139.
go back to reference V. Pautu, D. Leonetti, E. Lepeltier, N. Clere, C. Passirani, Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol. Res. 126, 31–53 (2017)PubMedCrossRef V. Pautu, D. Leonetti, E. Lepeltier, N. Clere, C. Passirani, Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol. Res. 126, 31–53 (2017)PubMedCrossRef
140.
go back to reference G. Valenti, H.M. Quinn, G.J.J.E. Heynen, L. Lan, J.D. Holland, R. Vogel, A. Wulf-Goldenberg, W. Birchmeier, Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res. 77, 2134–2147 (2017)PubMedCrossRef G. Valenti, H.M. Quinn, G.J.J.E. Heynen, L. Lan, J.D. Holland, R. Vogel, A. Wulf-Goldenberg, W. Birchmeier, Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res. 77, 2134–2147 (2017)PubMedCrossRef
141.
go back to reference C. Zang, J. Eucker, P. Habbel, C. Neumann, C.-O. Schulz, N. Bangemann, L. Kissner, H. Riess, H. Liu, Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle 14, 1291–1299 (2015)PubMedPubMedCentralCrossRef C. Zang, J. Eucker, P. Habbel, C. Neumann, C.-O. Schulz, N. Bangemann, L. Kissner, H. Riess, H. Liu, Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle 14, 1291–1299 (2015)PubMedPubMedCentralCrossRef
142.
go back to reference F. Mpekris, P. Papageorgis, C. Polydorou, C. Voutouri, M. Kalli, A.P. Pirentis, T. Stylianopoulos, Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. J. Control. Release 261, 105–112 (2017)PubMedPubMedCentralCrossRef F. Mpekris, P. Papageorgis, C. Polydorou, C. Voutouri, M. Kalli, A.P. Pirentis, T. Stylianopoulos, Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. J. Control. Release 261, 105–112 (2017)PubMedPubMedCentralCrossRef
143.
go back to reference Y. Du, Q. Long, L.I.N. Zhang, Y. Shi, X. Liu, X. Li, B.I.N. Guan, Y. Tian, X. Wang, L.E.I. Li, D. He, Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int. J. Oncol. 47, 2064–2072 (2015)PubMedPubMedCentralCrossRef Y. Du, Q. Long, L.I.N. Zhang, Y. Shi, X. Liu, X. Li, B.I.N. Guan, Y. Tian, X. Wang, L.E.I. Li, D. He, Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int. J. Oncol. 47, 2064–2072 (2015)PubMedPubMedCentralCrossRef
144.
go back to reference K. Li, H. Kang, Y. Wang, T. Hai, G. Rong, H. Sun, Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology. Med. Oncol. 33, 64 (2016)PubMedCrossRef K. Li, H. Kang, Y. Wang, T. Hai, G. Rong, H. Sun, Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology. Med. Oncol. 33, 64 (2016)PubMedCrossRef
145.
go back to reference K.P.L. Fabian, N. Chi-Sabins, J.L. Taylor, R. Fecek, A. Weinstein, W.J. Storkus, Therapeutic efficacy of combined vaccination against tumor pericyte-associated antigens DLK1 and DLK2 in mice. Oncoimmunology 6, e1290035 (2017)PubMedPubMedCentralCrossRef K.P.L. Fabian, N. Chi-Sabins, J.L. Taylor, R. Fecek, A. Weinstein, W.J. Storkus, Therapeutic efficacy of combined vaccination against tumor pericyte-associated antigens DLK1 and DLK2 in mice. Oncoimmunology 6, e1290035 (2017)PubMedPubMedCentralCrossRef
146.
go back to reference C. Wang, Y. Li, H. Chen, J. Zhang, J. Zhang, T. Qin, C. Duan, X. Chen, Y. Liu, X. Zhou, J. Yang, Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett. 402, 131–141 (2017)PubMedCrossRef C. Wang, Y. Li, H. Chen, J. Zhang, J. Zhang, T. Qin, C. Duan, X. Chen, Y. Liu, X. Zhou, J. Yang, Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett. 402, 131–141 (2017)PubMedCrossRef
147.
go back to reference Q. Zhou, Y. Zhou, X. Liu, Y. Shen, GDC-0449 improves the antitumor activity of nano-doxorubicin in pancreatic cancer in a fibroblast-enriched microenvironment. Sci. Rep. 7, 13379 (2017) Q. Zhou, Y. Zhou, X. Liu, Y. Shen, GDC-0449 improves the antitumor activity of nano-doxorubicin in pancreatic cancer in a fibroblast-enriched microenvironment. Sci. Rep. 7, 13379 (2017)
148.
go back to reference C.J. Hanley, M. Mellone, K. Ford, S.M. Thirdborough, T. Mellows, S.J. Frampton, D.M. Smith, E. Harden, C. Szyndralewiez, M. Bullock, F. Noble, K.A. Moutasim, E.V. King, P. Vijayanand, A.H. Mirnezami, T.J. Underwood, C.H. Ottensmeier, G.J. Thomas, Targeting the myofibroblastic cancer-associated fibroblast phenotype through inhibition of NOX4. J. Natl. Cancer Inst. 110, 109–120 (2018). https://doi.org/10.1093/jnci/djx121 CrossRef C.J. Hanley, M. Mellone, K. Ford, S.M. Thirdborough, T. Mellows, S.J. Frampton, D.M. Smith, E. Harden, C. Szyndralewiez, M. Bullock, F. Noble, K.A. Moutasim, E.V. King, P. Vijayanand, A.H. Mirnezami, T.J. Underwood, C.H. Ottensmeier, G.J. Thomas, Targeting the myofibroblastic cancer-associated fibroblast phenotype through inhibition of NOX4. J. Natl. Cancer Inst. 110, 109–120 (2018). https://​doi.​org/​10.​1093/​jnci/​djx121 CrossRef
149.
go back to reference M. Gabasa, R. Ikemori, F. Hilberg, N. Reguart, J. Alcaraz, Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br. J. Cancer 117, 1128–1138 (2017)PubMedPubMedCentralCrossRef M. Gabasa, R. Ikemori, F. Hilberg, N. Reguart, J. Alcaraz, Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br. J. Cancer 117, 1128–1138 (2017)PubMedPubMedCentralCrossRef
150.
go back to reference Y. Wei, T.J. Kim, D.H. Peng, D. Duan, D.L. Gibbons, M. Yamauchi, J.R. Jackson, C.J. Le Saux, C. Calhoun, J. Peters, R. Derynck, B.J. Backes, H.A. Chapman, Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J. Clin. Invest. 127, 3675–3688 (2017)PubMedPubMedCentralCrossRef Y. Wei, T.J. Kim, D.H. Peng, D. Duan, D.L. Gibbons, M. Yamauchi, J.R. Jackson, C.J. Le Saux, C. Calhoun, J. Peters, R. Derynck, B.J. Backes, H.A. Chapman, Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J. Clin. Invest. 127, 3675–3688 (2017)PubMedPubMedCentralCrossRef
151.
go back to reference M. Chen, X. Lei, C. Shi, M. Huang, X. Li, B. Wu, Z. Li, W. Han, B. Du, J. Hu, Q. Nie, W. Mai, N. Ma, N. Xu, X. Zhang, C. Fan, A. Hong, M. Xia, L. Luo, A. Ma, H. Li, Q. Yu, H. Chen, D. Zhang, W. Ye, Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J. Clin. Invest. 127, 3689–3701 (2017)PubMedPubMedCentralCrossRef M. Chen, X. Lei, C. Shi, M. Huang, X. Li, B. Wu, Z. Li, W. Han, B. Du, J. Hu, Q. Nie, W. Mai, N. Ma, N. Xu, X. Zhang, C. Fan, A. Hong, M. Xia, L. Luo, A. Ma, H. Li, Q. Yu, H. Chen, D. Zhang, W. Ye, Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J. Clin. Invest. 127, 3689–3701 (2017)PubMedPubMedCentralCrossRef
Metadata
Title
Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance
Authors
Pritish Nilendu
Sachin C. Sarode
Devashree Jahagirdar
Ishita Tandon
Shankargouda Patil
Gargi S. Sarode
Jayanta K. Pal
Nilesh Kumar Sharma
Publication date
01-08-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0388-2

Other articles of this Issue 4/2018

Cellular Oncology 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine