Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2017

01-04-2017

Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide

Authors: G. Jayakumar Amirtharaj, Sathish Kumar Natarajan, Anna Pulimood, K. A. Balasubramanian, Aparna Venkatraman, Anup Ramachandran

Published in: Cardiovascular Toxicology | Issue 2/2017

Login to get access

Abstract

Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.
Literature
1.
go back to reference Wang, T., Shankar, K., Ronis, M. J., & Mehendale, H. M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics, 294, 473–479.PubMed Wang, T., Shankar, K., Ronis, M. J., & Mehendale, H. M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics, 294, 473–479.PubMed
2.
go back to reference Ambrose, A. M., De, E. F., & Rather, L. J. (1949). Toxicity of thioacetamide in rats. The Journal of Industrial Hygiene and Toxicology, 31, 158–161.PubMed Ambrose, A. M., De, E. F., & Rather, L. J. (1949). Toxicity of thioacetamide in rats. The Journal of Industrial Hygiene and Toxicology, 31, 158–161.PubMed
3.
go back to reference Fitzhugh, O. G., & Nelson, A. A. (1948). Liver tumors in rats fed thiourea or thioacetamide. Science, 108, 626–628.CrossRefPubMed Fitzhugh, O. G., & Nelson, A. A. (1948). Liver tumors in rats fed thiourea or thioacetamide. Science, 108, 626–628.CrossRefPubMed
4.
go back to reference Rather, L. J. (1951). Experimental alteration of nuclear and cytoplasmic components of the liver cell with thioacetamide. I. Early onset and reversibility of volume changes of the nucleolus, nucleus and cytoplasm. Bulletin of the Johns Hopkins Hospital, 88, 38–58.PubMed Rather, L. J. (1951). Experimental alteration of nuclear and cytoplasmic components of the liver cell with thioacetamide. I. Early onset and reversibility of volume changes of the nucleolus, nucleus and cytoplasm. Bulletin of the Johns Hopkins Hospital, 88, 38–58.PubMed
5.
go back to reference Al-Hamoudi, W. K. (2010). Cardiovascular changes in cirrhosis: Pathogenesis and clinical implications. Saudi Journal of Gastroenterology, 16, 145–153.CrossRefPubMedPubMedCentral Al-Hamoudi, W. K. (2010). Cardiovascular changes in cirrhosis: Pathogenesis and clinical implications. Saudi Journal of Gastroenterology, 16, 145–153.CrossRefPubMedPubMedCentral
6.
go back to reference Fattouh, A. M., El-Shabrawi, M. H., Mahmoud, E. H., & Ahmed, W. O. (2016). Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging. Annals of Pediatric Cardiology, 9, 22–28.CrossRefPubMedPubMedCentral Fattouh, A. M., El-Shabrawi, M. H., Mahmoud, E. H., & Ahmed, W. O. (2016). Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging. Annals of Pediatric Cardiology, 9, 22–28.CrossRefPubMedPubMedCentral
7.
go back to reference Milic, S., Lulic, D., Stimac, D., Ruzic, A., & Zaputovic, L. (2016). Cardiac manifestations in alcoholic liver disease. Postgraduate Medical Journal, 92, 235–239.CrossRefPubMed Milic, S., Lulic, D., Stimac, D., Ruzic, A., & Zaputovic, L. (2016). Cardiac manifestations in alcoholic liver disease. Postgraduate Medical Journal, 92, 235–239.CrossRefPubMed
8.
go back to reference Naschitz, J. E., Slobodin, G., Lewis, R. J., Zuckerman, E., & Yeshurun, D. (2000). Heart diseases affecting the liver and liver diseases affecting the heart. American Heart Journal, 140, 111–120.CrossRefPubMed Naschitz, J. E., Slobodin, G., Lewis, R. J., Zuckerman, E., & Yeshurun, D. (2000). Heart diseases affecting the liver and liver diseases affecting the heart. American Heart Journal, 140, 111–120.CrossRefPubMed
9.
go back to reference Such, J., Frances, R., & Perez-Mateo, M. (2002). Nitric oxide in patients with cirrhosis and bacterial infections. Metabolic Brain Disease, 17, 303–309.CrossRefPubMed Such, J., Frances, R., & Perez-Mateo, M. (2002). Nitric oxide in patients with cirrhosis and bacterial infections. Metabolic Brain Disease, 17, 303–309.CrossRefPubMed
10.
go back to reference Liu, H., Ma, Z., & Lee, S. S. (2000). Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology, 118, 937–944.CrossRefPubMed Liu, H., Ma, Z., & Lee, S. S. (2000). Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology, 118, 937–944.CrossRefPubMed
11.
go back to reference Garcia-Estan, J., Ortiz, M. C., & Lee, S. S. (2002). Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clinical Science (Lond), 102, 213–222.CrossRef Garcia-Estan, J., Ortiz, M. C., & Lee, S. S. (2002). Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clinical Science (Lond), 102, 213–222.CrossRef
12.
go back to reference Sumida, Y., Niki, E., Naito, Y., & Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Research, 47, 869–880.CrossRefPubMed Sumida, Y., Niki, E., Naito, Y., & Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Research, 47, 869–880.CrossRefPubMed
13.
go back to reference Ramachandran, A., Prabhu, R., Thomas, S., Reddy, J. B., Pulimood, A., & Balasubramanian, K. A. (2002). Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology, 35, 622–629.CrossRefPubMed Ramachandran, A., Prabhu, R., Thomas, S., Reddy, J. B., Pulimood, A., & Balasubramanian, K. A. (2002). Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology, 35, 622–629.CrossRefPubMed
14.
go back to reference Natarajan, S. K., Ramamoorthy, P., Thomas, S., Basivireddy, J., Kang, G., Ramachandran, A., et al. (2006). Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria. Hepatology, 43, 837–846.CrossRefPubMed Natarajan, S. K., Ramamoorthy, P., Thomas, S., Basivireddy, J., Kang, G., Ramachandran, A., et al. (2006). Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria. Hepatology, 43, 837–846.CrossRefPubMed
15.
go back to reference Natarajan, S. K., Basivireddy, J., Ramachandran, A., Thomas, S., Ramamoorthy, P., Pulimood, A. B., et al. (2006). Renal damage in experimentally-induced cirrhosis in rats: Role of oxygen free radicals. Hepatology, 43, 1248–1256.CrossRefPubMed Natarajan, S. K., Basivireddy, J., Ramachandran, A., Thomas, S., Ramamoorthy, P., Pulimood, A. B., et al. (2006). Renal damage in experimentally-induced cirrhosis in rats: Role of oxygen free radicals. Hepatology, 43, 1248–1256.CrossRefPubMed
16.
go back to reference Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G., & Lee, S. S. (2010). Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. Journal of Hepatology, 53, 298–306.CrossRefPubMedPubMedCentral Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G., & Lee, S. S. (2010). Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. Journal of Hepatology, 53, 298–306.CrossRefPubMedPubMedCentral
17.
go back to reference Ljubuncic, P., Tanne, Z., & Bomzon, A. (2000). Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut, 47, 710–716.CrossRefPubMedPubMedCentral Ljubuncic, P., Tanne, Z., & Bomzon, A. (2000). Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut, 47, 710–716.CrossRefPubMedPubMedCentral
18.
go back to reference Hori, N., Okanoue, T., Sawa, Y., Mori, T., & Kashima, K. (1993). Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. Digestive Diseases and Sciences, 38, 2195–2202.CrossRefPubMed Hori, N., Okanoue, T., Sawa, Y., Mori, T., & Kashima, K. (1993). Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. Digestive Diseases and Sciences, 38, 2195–2202.CrossRefPubMed
19.
go back to reference Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306, 79–82.CrossRefPubMed Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306, 79–82.CrossRefPubMed
20.
go back to reference Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed
21.
go back to reference Chan, H. W., & Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids, 12, 99–104.CrossRefPubMed Chan, H. W., & Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids, 12, 99–104.CrossRefPubMed
22.
go back to reference Sohal, R. S., Agarwal, S., Dubey, A., & Orr, W. C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proceedings of the National Academy of Sciences USA, 90, 7255–7259.CrossRef Sohal, R. S., Agarwal, S., Dubey, A., & Orr, W. C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proceedings of the National Academy of Sciences USA, 90, 7255–7259.CrossRef
23.
go back to reference Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed
24.
go back to reference Takeyama, N., Matsuo, N., & Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochemical Journal, 294(Pt 3), 719–725.CrossRefPubMedPubMedCentral Takeyama, N., Matsuo, N., & Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochemical Journal, 294(Pt 3), 719–725.CrossRefPubMedPubMedCentral
25.
go back to reference Madesh, M., & Balasubramanian, K. A. (1997). Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Letters, 413, 269–272.CrossRefPubMed Madesh, M., & Balasubramanian, K. A. (1997). Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Letters, 413, 269–272.CrossRefPubMed
26.
go back to reference Zhao, T. C., Taher, M. M., Valerie, K. C., & Kukreja, R. C. (2001). p38 Triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-κB and iNOS. Circulation Research, 89, 915–922.CrossRefPubMed Zhao, T. C., Taher, M. M., Valerie, K. C., & Kukreja, R. C. (2001). p38 Triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-κB and iNOS. Circulation Research, 89, 915–922.CrossRefPubMed
27.
go back to reference Clerk, A., Fuller, S. J., Michael, A., & Sugden, P. H. (1998). Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. Journal of Biological Chemistry, 273, 7228–7234.CrossRefPubMed Clerk, A., Fuller, S. J., Michael, A., & Sugden, P. H. (1998). Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. Journal of Biological Chemistry, 273, 7228–7234.CrossRefPubMed
28.
go back to reference van Obbergh, L., Vallieres, Y., & Blaise, G. (1996). Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of Hepatology, 24, 747–752.CrossRefPubMed van Obbergh, L., Vallieres, Y., & Blaise, G. (1996). Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of Hepatology, 24, 747–752.CrossRefPubMed
29.
go back to reference Sarma, D., Hajovsky, H., Koen, Y. M., Galeva, N. A., Williams, T. D., Staudinger, J. L., & Hanzlik, R. P. (2012). Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chemical Research in Toxicology, 25, 1868–1877.CrossRefPubMedPubMedCentral Sarma, D., Hajovsky, H., Koen, Y. M., Galeva, N. A., Williams, T. D., Staudinger, J. L., & Hanzlik, R. P. (2012). Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chemical Research in Toxicology, 25, 1868–1877.CrossRefPubMedPubMedCentral
30.
go back to reference Metze, K., & Brandt, G. (1981). Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepato-Gastroenterology, 28, 99–101.PubMed Metze, K., & Brandt, G. (1981). Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepato-Gastroenterology, 28, 99–101.PubMed
31.
go back to reference Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M., Lerner, D., Pu, H., et al. (2001). The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences USA, 98, 12283–12288.CrossRef Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M., Lerner, D., Pu, H., et al. (2001). The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences USA, 98, 12283–12288.CrossRef
32.
go back to reference Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., et al. (2012). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-κB and MAPKs. Immunobiology, 218, 628–634.CrossRefPubMed Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., et al. (2012). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-κB and MAPKs. Immunobiology, 218, 628–634.CrossRefPubMed
33.
go back to reference Shiva, S., Moellering, D., Ramachandran, A., Levonen, A. L., Landar, A., Venkatraman, A., et al. (2004). Redox signalling: From nitric oxide to oxidized lipids. Biochemical Society Symposia, 71, 107–120.CrossRef Shiva, S., Moellering, D., Ramachandran, A., Levonen, A. L., Landar, A., Venkatraman, A., et al. (2004). Redox signalling: From nitric oxide to oxidized lipids. Biochemical Society Symposia, 71, 107–120.CrossRef
34.
go back to reference Shafaroodi, H., Ebrahimi, F., Moezi, L., Hashemi, M., Doostar, Y., Ghasemi, M., & Dehpour, A. R. (2010). Cholestasis induces apoptosis in mice cardiac cells: The possible role of nitric oxide and oxidative stress. Liver International, 30, 898–905.CrossRefPubMed Shafaroodi, H., Ebrahimi, F., Moezi, L., Hashemi, M., Doostar, Y., Ghasemi, M., & Dehpour, A. R. (2010). Cholestasis induces apoptosis in mice cardiac cells: The possible role of nitric oxide and oxidative stress. Liver International, 30, 898–905.CrossRefPubMed
35.
go back to reference Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, C1424–C1437.PubMed Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, C1424–C1437.PubMed
36.
go back to reference Mani, A. R., Ippolito, S., Ollosson, R., & Moore, K. P. (2006). Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology, 43, 847–856.CrossRefPubMed Mani, A. R., Ippolito, S., Ollosson, R., & Moore, K. P. (2006). Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology, 43, 847–856.CrossRefPubMed
37.
go back to reference Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. T., Nieves-Cintron, M., Chen, T., et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation Research, 108, 837–846.CrossRefPubMedPubMedCentral Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. T., Nieves-Cintron, M., Chen, T., et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation Research, 108, 837–846.CrossRefPubMedPubMedCentral
38.
go back to reference Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., et al. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130, 554–564.CrossRefPubMed Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., et al. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130, 554–564.CrossRefPubMed
39.
go back to reference Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S., & Sabbah, H. N. (2000). Abnormal mitochondrial respiration in failed human myocardium. Journal of Molecular and Cellular Cardiology, 32, 2361–2367.CrossRefPubMed Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S., & Sabbah, H. N. (2000). Abnormal mitochondrial respiration in failed human myocardium. Journal of Molecular and Cellular Cardiology, 32, 2361–2367.CrossRefPubMed
40.
go back to reference Pham, T., Loiselle, D., Power, A., & Hickey, A. J. (2014). Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. American Journal of Physiology: Cell Physiology, 307, C499–C507.CrossRefPubMed Pham, T., Loiselle, D., Power, A., & Hickey, A. J. (2014). Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. American Journal of Physiology: Cell Physiology, 307, C499–C507.CrossRefPubMed
41.
go back to reference Lemasters, J. J., Theruvath, T. P., Zhong, Z., & Nieminen, A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta, 1787, 1395–1401.CrossRefPubMedPubMedCentral Lemasters, J. J., Theruvath, T. P., Zhong, Z., & Nieminen, A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta, 1787, 1395–1401.CrossRefPubMedPubMedCentral
42.
go back to reference Kajander, O. A., Karhunen, P. J., & Jacobs, H. T. (2002). The relationship between somatic mtDNA rearrangements, human heart disease and aging. Human Molecular Genetics, 11, 317–324.CrossRefPubMed Kajander, O. A., Karhunen, P. J., & Jacobs, H. T. (2002). The relationship between somatic mtDNA rearrangements, human heart disease and aging. Human Molecular Genetics, 11, 317–324.CrossRefPubMed
43.
go back to reference Zavodnik, I. B., Dremza, I. K., Cheshchevik, V. T., Lapshina, E. A., & Zamaraewa, M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences, 92, 1110–1117.CrossRefPubMed Zavodnik, I. B., Dremza, I. K., Cheshchevik, V. T., Lapshina, E. A., & Zamaraewa, M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences, 92, 1110–1117.CrossRefPubMed
44.
go back to reference Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545.CrossRefPubMed Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545.CrossRefPubMed
45.
go back to reference Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.CrossRefPubMed Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.CrossRefPubMed
Metadata
Title
Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide
Authors
G. Jayakumar Amirtharaj
Sathish Kumar Natarajan
Anna Pulimood
K. A. Balasubramanian
Aparna Venkatraman
Anup Ramachandran
Publication date
01-04-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9371-1

Other articles of this Issue 2/2017

Cardiovascular Toxicology 2/2017 Go to the issue