Skip to main content
Top
Published in: Heart Failure Reviews 1/2014

01-01-2014

Role of microangiopathy in diabetic cardiomyopathy

Authors: Adriana Adameova, Naranjan S. Dhalla

Published in: Heart Failure Reviews | Issue 1/2014

Login to get access

Abstract

Although heart disease due to diabetes is mainly associated with complications of the large vessels, microvascular abnormalities are also considered to be involved in altering cardiac structure and function. Three major defects, such as endothelial dysfunction, alteration in the production/release of hormones, and shift in metabolism of smooth muscle cells, have been suggested to produce damage to the small arteries and capillaries (microangiopathy) due to hyperglycemia, and promote the development of diabetic cardiomyopathy. These factors may either act alone or in combination to produce oxidative stress as well as changes in cellular signaling and gene transcription, which in turn cause vasoconstriction and structural remodeling of the coronary vessels. Such alterations in microvasculature produce hypoperfusion of the myocardium and thereby lower the energy status resulting in changes in Ca2+-handling, apoptosis, and decreased cardiac contractile force. This article discusses diabetes-induced mechanisms of microvascular damage leading to cardiac dysfunction that is characterized by myocardial dilatation, cardiac hypertrophy as well as early diastolic and late systolic defects. Metabolic defects and changes in neurohumoral system due to diabetes, which promote disturbances in vascular homeostasis, are highlighted. In addition, increase in the vulnerability of the diabetic heart to the development of heart failure and the signaling pathways integrating nuclear factor κB and protein kinase C in diabetic cardiomyopathy are also described for comparison.
Literature
1.
go back to reference Dhalla NS, Pierce GN, Innes IR, Beamish RE (1985) Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281PubMed Dhalla NS, Pierce GN, Innes IR, Beamish RE (1985) Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281PubMed
2.
go back to reference Furie K, Inzucchi SE (2008) Diabetes mellitus, insulin resistance, hyperglycemia, and stroke. Curr Neurol Neurosci Rep 8:12–29PubMed Furie K, Inzucchi SE (2008) Diabetes mellitus, insulin resistance, hyperglycemia, and stroke. Curr Neurol Neurosci Rep 8:12–29PubMed
3.
go back to reference Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrinol Rev 25:543–567 Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrinol Rev 25:543–567
4.
go back to reference Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757PubMed Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757PubMed
5.
go back to reference Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602PubMed Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602PubMed
6.
go back to reference Ahmed SS, Jaferi GA, Narang RM, Regan TJ (1975) Preclinical abnormality of left ventricular function in diabetes mellitus. Am Heart J 89:153–158PubMed Ahmed SS, Jaferi GA, Narang RM, Regan TJ (1975) Preclinical abnormality of left ventricular function in diabetes mellitus. Am Heart J 89:153–158PubMed
7.
go back to reference Shapiro LM (1982) Echocardiographic features of impaired ventricular function in diabetes mellitus. Br Heart J 47:439–444PubMedCentralPubMed Shapiro LM (1982) Echocardiographic features of impaired ventricular function in diabetes mellitus. Br Heart J 47:439–444PubMedCentralPubMed
8.
go back to reference Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038PubMed Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038PubMed
9.
go back to reference Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS (2007) Evaluation of methods and management of acute coronary events investigators. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3,000 patients between 1995 and 2003. Eur Heart J 28:540–545PubMed Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS (2007) Evaluation of methods and management of acute coronary events investigators. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3,000 patients between 1995 and 2003. Eur Heart J 28:540–545PubMed
10.
go back to reference Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbee DE (2001) The prognosis of heart failure in the general population: the Rotterdam study. Eur Heart J 22:1318–1327PubMed Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbee DE (2001) The prognosis of heart failure in the general population: the Rotterdam study. Eur Heart J 22:1318–1327PubMed
11.
go back to reference Fischer VW, Barner HB, Leskiu ML (1979) Capillary basal laminar thickness in diabetic human myocardium. Diabetes 28:713–719PubMed Fischer VW, Barner HB, Leskiu ML (1979) Capillary basal laminar thickness in diabetic human myocardium. Diabetes 28:713–719PubMed
12.
go back to reference Factor SM, Okum EM, Minase T (1980) Capillary microaneurysms in the human diabetic heart. New Engl J Med 302:384–388PubMed Factor SM, Okum EM, Minase T (1980) Capillary microaneurysms in the human diabetic heart. New Engl J Med 302:384–388PubMed
13.
go back to reference Factor SM, Sonnenblick EH (1982) Hypothesis: is congestive cardiomyopathy caused by a hyperreactive myocardial microcirculation (microvascular spasm)? Am J Cardiol 50:1149–1152PubMed Factor SM, Sonnenblick EH (1982) Hypothesis: is congestive cardiomyopathy caused by a hyperreactive myocardial microcirculation (microvascular spasm)? Am J Cardiol 50:1149–1152PubMed
14.
go back to reference Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH (1984) Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy. Am J Pathol 116:9–20PubMed Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH (1984) Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy. Am J Pathol 116:9–20PubMed
15.
go back to reference Sonnenblick EH, Fein F, Capasso JM, Factor SM (1985) Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential therapy. Am J Cardiol 55:179B–184BPubMed Sonnenblick EH, Fein F, Capasso JM, Factor SM (1985) Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential therapy. Am J Cardiol 55:179B–184BPubMed
16.
go back to reference Fein FS, Capasso JM, Aronson RS, Cho S, Nordin C, Miller-Green B, Sonnenblick EH, Factor SM. Combined renovascular hypertension and diabetes in rats: a new preparation of congestive cardiomyopathy. Circulation 70:318–330 Fein FS, Capasso JM, Aronson RS, Cho S, Nordin C, Miller-Green B, Sonnenblick EH, Factor SM. Combined renovascular hypertension and diabetes in rats: a new preparation of congestive cardiomyopathy. Circulation 70:318–330
17.
go back to reference Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC, American College of Cardiology/American Heart Association (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 38:2101–2113PubMed Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC, American College of Cardiology/American Heart Association (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 38:2101–2113PubMed
18.
go back to reference McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMed McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMed
19.
go back to reference Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247PubMed Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247PubMed
20.
go back to reference Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331PubMedCentralPubMed Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331PubMedCentralPubMed
22.
go back to reference Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605PubMed Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605PubMed
23.
go back to reference Kaestner KH, Flores-Riveros JR, McLenithan JC, Janicot M, Lane MD (1991) Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP. Proc Natl Acad Sci USA 88:1933–1937PubMed Kaestner KH, Flores-Riveros JR, McLenithan JC, Janicot M, Lane MD (1991) Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP. Proc Natl Acad Sci USA 88:1933–1937PubMed
24.
go back to reference Kainulainen H, Breiner M, Schürmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282PubMed Kainulainen H, Breiner M, Schürmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282PubMed
25.
go back to reference Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32:235–243PubMed Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32:235–243PubMed
26.
go back to reference Chatham JC, Seymour AM (2002) Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res 55:104–112PubMed Chatham JC, Seymour AM (2002) Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res 55:104–112PubMed
27.
go back to reference Mokuda O, Sakamoto Y, Ikeda T, Mashiba H (1990) Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats. Ann Nutr Metab 34:259–265PubMed Mokuda O, Sakamoto Y, Ikeda T, Mashiba H (1990) Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats. Ann Nutr Metab 34:259–265PubMed
28.
go back to reference Berger J, Biswas C, Vicario PP, Strout HV, Saperstein R, Pilch PF (1989) Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340:70–72PubMed Berger J, Biswas C, Vicario PP, Strout HV, Saperstein R, Pilch PF (1989) Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340:70–72PubMed
29.
go back to reference Camps M, Castelló A, Muñoz P, Monfar M, Testar X, Palacín M, Zorzano A (1992) Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J Mar 15(Pt 3):765–772 Camps M, Castelló A, Muñoz P, Monfar M, Testar X, Palacín M, Zorzano A (1992) Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J Mar 15(Pt 3):765–772
30.
go back to reference Sivitz WI, DeSautel SL, Kayano T, Bell GI, Pessin JE (1989) Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340:72–74PubMed Sivitz WI, DeSautel SL, Kayano T, Bell GI, Pessin JE (1989) Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340:72–74PubMed
31.
go back to reference Russell RR III, Yin R, Caplan MJ, Hu X, Ren J, Shulman GI, Sinusas AJ, Young LH (1998) Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 98:2180–2186PubMed Russell RR III, Yin R, Caplan MJ, Hu X, Ren J, Shulman GI, Sinusas AJ, Young LH (1998) Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 98:2180–2186PubMed
32.
go back to reference Garvey WT, Hardin D, Juhaszova M, Dominguez JH (1993) Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 264:H837–H844PubMed Garvey WT, Hardin D, Juhaszova M, Dominguez JH (1993) Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 264:H837–H844PubMed
33.
go back to reference Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89PubMed Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89PubMed
34.
go back to reference Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233–238PubMed Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233–238PubMed
35.
go back to reference Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792PubMed Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792PubMed
36.
go back to reference Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMed Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMed
37.
go back to reference Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antiox Redox Signal 7:1388–1397 Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antiox Redox Signal 7:1388–1397
38.
go back to reference Al-Maghrebi M, Benter IF, Diz DI (2009) Endogenous angiotensin-(1–7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol Res 59:263–268PubMedCentralPubMed Al-Maghrebi M, Benter IF, Diz DI (2009) Endogenous angiotensin-(1–7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol Res 59:263–268PubMedCentralPubMed
39.
go back to reference Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314PubMed Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314PubMed
40.
go back to reference Hall G, Hasday JD, Rogers TB (2006) Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol 41:580–591PubMed Hall G, Hasday JD, Rogers TB (2006) Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol 41:580–591PubMed
41.
go back to reference Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543–1548PubMed Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543–1548PubMed
42.
go back to reference Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938PubMed Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938PubMed
43.
go back to reference Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 106:13505–13510PubMedCentralPubMed Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 106:13505–13510PubMedCentralPubMed
44.
go back to reference McQueen AP, Zhang D, Hu P, Swenson L, Yang Y, Zaha VG, Hoffman JL, Yun UJ, Chakrabarti G, Wang Z, Albertine KH, Abel ED, Litwin SE (2005) Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol 39:882–892PubMed McQueen AP, Zhang D, Hu P, Swenson L, Yang Y, Zaha VG, Hoffman JL, Yun UJ, Chakrabarti G, Wang Z, Albertine KH, Abel ED, Litwin SE (2005) Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol 39:882–892PubMed
45.
go back to reference Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105:373–379PubMed Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105:373–379PubMed
46.
go back to reference Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T (2007) Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 292:E1030–E1040PubMed Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T (2007) Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 292:E1030–E1040PubMed
47.
go back to reference Thornalley P, Wolff S, Crabbe J, Stern A (1984) The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta 797:276–287PubMed Thornalley P, Wolff S, Crabbe J, Stern A (1984) The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta 797:276–287PubMed
48.
go back to reference Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250PubMed Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250PubMed
49.
go back to reference Finkel T, Holbrook NL (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMed Finkel T, Holbrook NL (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMed
50.
go back to reference Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 89:11059–11063PubMedCentralPubMed Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 89:11059–11063PubMedCentralPubMed
51.
go back to reference Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 94:11233–11237PubMedCentralPubMed Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 94:11233–11237PubMedCentralPubMed
52.
go back to reference Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMed Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMed
53.
go back to reference Kolter T, Uphues I, Eckel J (1997) Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol 273:E59–E67PubMed Kolter T, Uphues I, Eckel J (1997) Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol 273:E59–E67PubMed
54.
go back to reference Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718PubMed Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718PubMed
55.
go back to reference Adameova A, Xu YJ, Duhamel TA, Tappia PS, Shan L, Dhalla NS (2009) Anti-atherosclerotic molecules targeting oxidative stress and inflammation. Curr Pharm Des 15:3094–3107PubMed Adameova A, Xu YJ, Duhamel TA, Tappia PS, Shan L, Dhalla NS (2009) Anti-atherosclerotic molecules targeting oxidative stress and inflammation. Curr Pharm Des 15:3094–3107PubMed
56.
go back to reference Steinberg D (2005) Hypercholesterolemia and inflammation in atherogenesis: two sides of the same coin. Mol Nutr Food Res 49:995–998PubMed Steinberg D (2005) Hypercholesterolemia and inflammation in atherogenesis: two sides of the same coin. Mol Nutr Food Res 49:995–998PubMed
57.
go back to reference Li L, Sawamura T, Renier G (2003) Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 52:1843–1850PubMed Li L, Sawamura T, Renier G (2003) Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 52:1843–1850PubMed
58.
go back to reference Osto E, Kouroedov A, Mocharla P, Akhmedov A, Besler C, Rohrer L, von Eckardstein A, Iliceto S, Volpe M, Lüscher TF, Cosentino F (2008) Inhibition of protein kinase Cbeta prevents foam cell formation by reducing scavenger receptor A expression in human macrophages. Circulation 118:2174–2182PubMed Osto E, Kouroedov A, Mocharla P, Akhmedov A, Besler C, Rohrer L, von Eckardstein A, Iliceto S, Volpe M, Lüscher TF, Cosentino F (2008) Inhibition of protein kinase Cbeta prevents foam cell formation by reducing scavenger receptor A expression in human macrophages. Circulation 118:2174–2182PubMed
59.
go back to reference Wu Y, Wu G, Qi X, Lin H, Qian H, Shen J, Lin S (2006) Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 101:335–343PubMed Wu Y, Wu G, Qi X, Lin H, Qian H, Shen J, Lin S (2006) Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 101:335–343PubMed
60.
go back to reference Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681PubMed Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681PubMed
61.
go back to reference Ganz MB, Seftel A (2000) Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 278:E146–E152PubMed Ganz MB, Seftel A (2000) Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 278:E146–E152PubMed
62.
go back to reference Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542PubMed Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542PubMed
63.
go back to reference Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10PubMed Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10PubMed
65.
go back to reference Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda) 21:250–258 Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda) 21:250–258
66.
go back to reference Liu GX, Hanley PJ, Ray J, Daut J (2001) Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart. Circ Res 88:918–924PubMed Liu GX, Hanley PJ, Ray J, Daut J (2001) Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart. Circ Res 88:918–924PubMed
67.
go back to reference Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ (2008) Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799PubMed Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ (2008) Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799PubMed
68.
go back to reference Schmitz FJ, Rösen P, Reinauer H (1995) Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm Metab Res 12:515–522 Schmitz FJ, Rösen P, Reinauer H (1995) Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm Metab Res 12:515–522
69.
go back to reference Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMed Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMed
70.
go back to reference Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, Kajstura J (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab Invest 80:513–527PubMed Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, Kajstura J (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab Invest 80:513–527PubMed
71.
go back to reference Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, Anversa P (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424PubMed Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, Anversa P (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424PubMed
72.
go back to reference Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923PubMedCentralPubMed Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923PubMedCentralPubMed
73.
go back to reference Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS (1986) Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res 59:684–693PubMed Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS (1986) Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res 59:684–693PubMed
74.
go back to reference Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535PubMed Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535PubMed
75.
go back to reference Adameova A, Abdellatif Y, Dhalla NS (2009) Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol 87:493–514PubMed Adameova A, Abdellatif Y, Dhalla NS (2009) Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol 87:493–514PubMed
76.
go back to reference Dhalla KS, Ganguly PK, Rupp H, Beamish RE, Dhalla NS (1989) Measurement of adrenolutin as an oxidation product of catecholamines in plasma. Mol Cell Biochem 87:85–92PubMed Dhalla KS, Ganguly PK, Rupp H, Beamish RE, Dhalla NS (1989) Measurement of adrenolutin as an oxidation product of catecholamines in plasma. Mol Cell Biochem 87:85–92PubMed
77.
go back to reference Machackova J, Liu X, Lukas A, Dhalla NS (2004) Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 261:271–278PubMed Machackova J, Liu X, Lukas A, Dhalla NS (2004) Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 261:271–278PubMed
78.
go back to reference Kato K, Lukas A, Chapman DC, Rupp H, Dhalla NS (2002) Differential effects of etomoxir treatment on cardiac Na+–K+ ATPase subunits in diabetic rats. Mol Cell Biochem 232:57–62PubMed Kato K, Lukas A, Chapman DC, Rupp H, Dhalla NS (2002) Differential effects of etomoxir treatment on cardiac Na+–K+ ATPase subunits in diabetic rats. Mol Cell Biochem 232:57–62PubMed
79.
go back to reference Xu YJ, Elimban V, Takeda S, Ren B, Takeda N, Dhalla NS (1996) Cardiac sarcoplasmic reticulum function and gene expression in chronic diabetes. Cardiovasc Pathobiol 1:89–96 Xu YJ, Elimban V, Takeda S, Ren B, Takeda N, Dhalla NS (1996) Cardiac sarcoplasmic reticulum function and gene expression in chronic diabetes. Cardiovasc Pathobiol 1:89–96
80.
go back to reference Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS (2006) Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes. Ann N Y Acad Sci 1084:141–154PubMed Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS (2006) Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes. Ann N Y Acad Sci 1084:141–154PubMed
81.
go back to reference Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958PubMed Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958PubMed
82.
go back to reference Baba HA, Iwai T, Bauer M, Irlbeck M, Schmid KW, Zimmer HG (1999) Differential effects of angiotensin II receptor blockade on pressure-induced left ventricular hypertrophy and fibrosis in rats. J Mol Cell Cardiol 31:445–455PubMed Baba HA, Iwai T, Bauer M, Irlbeck M, Schmid KW, Zimmer HG (1999) Differential effects of angiotensin II receptor blockade on pressure-induced left ventricular hypertrophy and fibrosis in rats. J Mol Cell Cardiol 31:445–455PubMed
83.
go back to reference Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32:S314–S321PubMed Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32:S314–S321PubMed
84.
go back to reference Jansson PA (2007) Endothelial dysfunction in insulin resistance and type 2 diabetes. J Int Med 262:173–183 Jansson PA (2007) Endothelial dysfunction in insulin resistance and type 2 diabetes. J Int Med 262:173–183
85.
go back to reference Kalani M (2008) The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag 4:1061–1068PubMedCentralPubMed Kalani M (2008) The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag 4:1061–1068PubMedCentralPubMed
86.
go back to reference Lam HC (2001) Role of endothelin in diabetic vascular complications. Endocrine 14:277–284PubMed Lam HC (2001) Role of endothelin in diabetic vascular complications. Endocrine 14:277–284PubMed
87.
go back to reference Fukui M, Nakamura T, Ebihara I, Osada S, Tomino Y, Masaki T, Goto K, Furuichi Y, Koide H (1993) Gene expression for endothelins and their receptors in glomeruli of diabetic rats. J Lab Clin Med 122:149–156PubMed Fukui M, Nakamura T, Ebihara I, Osada S, Tomino Y, Masaki T, Goto K, Furuichi Y, Koide H (1993) Gene expression for endothelins and their receptors in glomeruli of diabetic rats. J Lab Clin Med 122:149–156PubMed
88.
go back to reference Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H (1990) Enhanced secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Lett 267:16–18PubMed Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H (1990) Enhanced secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Lett 267:16–18PubMed
89.
go back to reference Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH (1992) Increased plasma levels of endothelin in diabetic patients with hypertension. Am J Hypertens 5:161–166PubMed Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH (1992) Increased plasma levels of endothelin in diabetic patients with hypertension. Am J Hypertens 5:161–166PubMed
90.
go back to reference Harris AK, Hutchinson JR, Sachidanandam K, Johnson MH, Dorrance AM, Stepp DW, Fagan SC, Ergul A (2005) Type 2 diabetes causes remodeling of cerebrovasculature via differential regulation of matrix etalloproteinases and collagen synthesis: role of endothelin-1. Diabetes 54:2638–2644PubMed Harris AK, Hutchinson JR, Sachidanandam K, Johnson MH, Dorrance AM, Stepp DW, Fagan SC, Ergul A (2005) Type 2 diabetes causes remodeling of cerebrovasculature via differential regulation of matrix etalloproteinases and collagen synthesis: role of endothelin-1. Diabetes 54:2638–2644PubMed
91.
go back to reference Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310PubMed Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310PubMed
92.
go back to reference Hopfner RL, Misurski D, Wilson TW, McNeill JR, Gopalakrishnan V (1998) Insulin and vanadate restore decreased plasma endothelin concentrations and exaggerated vascular responses to normal in the streptozotocin diabetic rat. Diabetologia 41:1233–1240PubMed Hopfner RL, Misurski D, Wilson TW, McNeill JR, Gopalakrishnan V (1998) Insulin and vanadate restore decreased plasma endothelin concentrations and exaggerated vascular responses to normal in the streptozotocin diabetic rat. Diabetologia 41:1233–1240PubMed
93.
go back to reference Wu SQ, Tang F (1998) Impaired paracrine effect of endothelin-1 on vascular smooth muscle in streptozotocin-diabetic rats. Cardiovasc Res 39:651–656PubMed Wu SQ, Tang F (1998) Impaired paracrine effect of endothelin-1 on vascular smooth muscle in streptozotocin-diabetic rats. Cardiovasc Res 39:651–656PubMed
94.
go back to reference Tada H, Muramatsu I, Nakai T, Kigoshi S, Miyabo S (1994) Effects of chronic diabetes on the responsiveness to endothelin-1 and other agents of rat atria and thoracic aorta. Gen Pharmacol 25:1221–1228PubMed Tada H, Muramatsu I, Nakai T, Kigoshi S, Miyabo S (1994) Effects of chronic diabetes on the responsiveness to endothelin-1 and other agents of rat atria and thoracic aorta. Gen Pharmacol 25:1221–1228PubMed
95.
go back to reference Schiffrin EL, Touyz RM (1998) Vascular biology of endothelin. J Cardiovasc Pharmacol 32:S2–S13PubMed Schiffrin EL, Touyz RM (1998) Vascular biology of endothelin. J Cardiovasc Pharmacol 32:S2–S13PubMed
96.
go back to reference Arikawa E, Cheung C, Sekirov I, Battell ML, Yuen VG, McNeill JH (2006) Effects of endothelin receptor blockade on hypervasoreactivity in streptozotocin diabetic rats: vessel-specific involvement of thromboxane A2. Can J Physiol Pharmacol 84:823–833PubMed Arikawa E, Cheung C, Sekirov I, Battell ML, Yuen VG, McNeill JH (2006) Effects of endothelin receptor blockade on hypervasoreactivity in streptozotocin diabetic rats: vessel-specific involvement of thromboxane A2. Can J Physiol Pharmacol 84:823–833PubMed
97.
go back to reference Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418PubMed Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418PubMed
98.
go back to reference Verma S, Arikawa E, McNeill JH (2001) Long-term endothelin receptor blockade improves cardiovascular function in diabetes. Am J Hypertens 14:679–687PubMed Verma S, Arikawa E, McNeill JH (2001) Long-term endothelin receptor blockade improves cardiovascular function in diabetes. Am J Hypertens 14:679–687PubMed
99.
100.
go back to reference Szabó C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735PubMedCentralPubMed Szabó C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735PubMedCentralPubMed
101.
go back to reference Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:713–727PubMed Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:713–727PubMed
102.
go back to reference Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680PubMed Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680PubMed
103.
go back to reference Garcia Soriano F, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabó C (2001) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7:108–113PubMed Garcia Soriano F, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabó C (2001) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7:108–113PubMed
104.
go back to reference Szabó C, Zanchi A, Komjáti K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A (2002) Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106:2680–2686PubMed Szabó C, Zanchi A, Komjáti K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A (2002) Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106:2680–2686PubMed
Metadata
Title
Role of microangiopathy in diabetic cardiomyopathy
Authors
Adriana Adameova
Naranjan S. Dhalla
Publication date
01-01-2014
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2014
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-013-9378-7

Other articles of this Issue 1/2014

Heart Failure Reviews 1/2014 Go to the issue