Skip to main content
Top
Published in: Cancer Cell International 1/2011

Open Access 01-12-2011 | Primary research

Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning

Authors: Lara Milane, Zhenfeng Duan, Mansoor Amiji

Published in: Cancer Cell International | Issue 1/2011

Login to get access

Abstract

Background

The development of multi-drug resistant (MDR) cancer is a significant challenge in the clinical treatment of recurrent disease. Hypoxia is an environmental selection pressure that contributes to the development of MDR. Many cancer cells, including MDR cells, resort to glycolysis for energy acquisition. This study aimed to explore the relationship between hypoxia, glycolysis, and MDR in a panel of human breast and ovarian cancer cells. A second aim of this study was to develop an orthotopic animal model of MDR breast cancer.

Methods

Nucleic and basal protein was extracted from a panel of human breast and ovarian cancer cells; MDR cells and cells pre-exposed to either normoxic or hypoxic conditions. Western blotting was used to assess the expression of MDR markers, hypoxia inducible factors, and glycolytic proteins. Tumor xenografts were established in the mammary fat pad of nu/nu mice using human breast cancer cells that were pre-exposed to either hypoxic or normoxic conditions. Immunohistochemistry was used to assess the MDR character of excised tumors.

Results

Hypoxia induces MDR and glycolysis in vitro, but the cellular response is cell-line specific and duration dependent. Using hypoxic, triple-negative breast cancer cells to establish 100 mm3 tumor xenografts in nude mice is a relevant model for MDR breast cancer.

Conclusion

Hypoxic pre-conditiong and xenografting may be used to develop a multitude of orthotopic models for MDR cancer aiding in the study and treatment of the disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harris AL, Hochhauser D: Mechanisms of multidrug resistance in cancer treatment. Acta oncologica (Stockholm, Sweden). 1992, 31 (2): 205-213. 10.3109/02841869209088904.CrossRef Harris AL, Hochhauser D: Mechanisms of multidrug resistance in cancer treatment. Acta oncologica (Stockholm, Sweden). 1992, 31 (2): 205-213. 10.3109/02841869209088904.CrossRef
2.
go back to reference Jamroziak K, Robak T: Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology (Amsterdam, Netherlands). 2004, 9 (2): 91-105. Jamroziak K, Robak T: Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology (Amsterdam, Netherlands). 2004, 9 (2): 91-105.
3.
go back to reference Leighton JC, Goldstein LJ: P-glycoprotein in adult solid tumors. Expression and prognostic significance. Hematology/oncology clinics of North America. 1995, 9 (2): 251-273.PubMed Leighton JC, Goldstein LJ: P-glycoprotein in adult solid tumors. Expression and prognostic significance. Hematology/oncology clinics of North America. 1995, 9 (2): 251-273.PubMed
4.
go back to reference Tredan O, Galmarini CM, Patel K, Tannock IF: Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute. 2007, 99 (19): 1441-1454. 10.1093/jnci/djm135.CrossRefPubMed Tredan O, Galmarini CM, Patel K, Tannock IF: Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute. 2007, 99 (19): 1441-1454. 10.1093/jnci/djm135.CrossRefPubMed
5.
go back to reference Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N: Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer science. 2003, 94 (1): 15-21. 10.1111/j.1349-7006.2003.tb01345.x.CrossRefPubMed Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N: Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer science. 2003, 94 (1): 15-21. 10.1111/j.1349-7006.2003.tb01345.x.CrossRefPubMed
6.
go back to reference Yague E, Arance A, Kubitza L, O'Hare M, Jat P, Ogilvie CM, Hart IR, Higgins CF, Raguz S: Ability to acquire drug resistance arises early during the tumorigenesis process. Cancer research. 2007, 67 (3): 1130-1137. 10.1158/0008-5472.CAN-06-2574.CrossRefPubMed Yague E, Arance A, Kubitza L, O'Hare M, Jat P, Ogilvie CM, Hart IR, Higgins CF, Raguz S: Ability to acquire drug resistance arises early during the tumorigenesis process. Cancer research. 2007, 67 (3): 1130-1137. 10.1158/0008-5472.CAN-06-2574.CrossRefPubMed
7.
go back to reference Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nature reviews. 2002, 2 (1): 48-58. 10.1038/nrc706.PubMed Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nature reviews. 2002, 2 (1): 48-58. 10.1038/nrc706.PubMed
8.
go back to reference Chinn LW, Kroetz DL: ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clinical pharmacology and therapeutics. 2007, 81 (2): 265-269. 10.1038/sj.clpt.6100052.CrossRefPubMed Chinn LW, Kroetz DL: ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clinical pharmacology and therapeutics. 2007, 81 (2): 265-269. 10.1038/sj.clpt.6100052.CrossRefPubMed
9.
go back to reference Gillet JP, Efferth T, Remacle J: Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et biophysica acta. 2007, 1775 (2): 237-262.PubMed Gillet JP, Efferth T, Remacle J: Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et biophysica acta. 2007, 1775 (2): 237-262.PubMed
10.
go back to reference Kimura Y, Morita S, Matsuo M, Ueda K: Mechanism of multidrug recognition by MDR1/ABCB1. Cancer science. 2007, 98 (9): 1303-1310. 10.1111/j.1349-7006.2007.00538.x.CrossRefPubMed Kimura Y, Morita S, Matsuo M, Ueda K: Mechanism of multidrug recognition by MDR1/ABCB1. Cancer science. 2007, 98 (9): 1303-1310. 10.1111/j.1349-7006.2007.00538.x.CrossRefPubMed
11.
go back to reference Buys TP, Chari R, Lee EH, Zhang M, MacAulay C, Lam S, Lam WL, Ling V: Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells. Genes, chromosomes & cancer. 2007, 46 (12): 1069-1079.CrossRef Buys TP, Chari R, Lee EH, Zhang M, MacAulay C, Lam S, Lam WL, Ling V: Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells. Genes, chromosomes & cancer. 2007, 46 (12): 1069-1079.CrossRef
12.
go back to reference Lemos C, Jansen G, Peters GJ: Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. British journal of cancer. 2008, 98 (5): 857-862. 10.1038/sj.bjc.6604213.PubMedCentralCrossRefPubMed Lemos C, Jansen G, Peters GJ: Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. British journal of cancer. 2008, 98 (5): 857-862. 10.1038/sj.bjc.6604213.PubMedCentralCrossRefPubMed
13.
go back to reference Fojo T: Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007, 10 (1-2): 59-67. 10.1016/j.drup.2007.02.002.CrossRefPubMed Fojo T: Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat. 2007, 10 (1-2): 59-67. 10.1016/j.drup.2007.02.002.CrossRefPubMed
14.
go back to reference Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M: Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007, 10 (1-2): 13-29. 10.1016/j.drup.2007.01.003.CrossRefPubMed Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M: Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007, 10 (1-2): 13-29. 10.1016/j.drup.2007.01.003.CrossRefPubMed
15.
go back to reference Mimeault M, Hauke R, Batra SK: Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clinical pharmacology and therapeutics. 2008, 83 (5): 673-691. 10.1038/sj.clpt.6100296.PubMedCentralCrossRefPubMed Mimeault M, Hauke R, Batra SK: Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clinical pharmacology and therapeutics. 2008, 83 (5): 673-691. 10.1038/sj.clpt.6100296.PubMedCentralCrossRefPubMed
16.
go back to reference Cairns R, Papandreou I, Denko N: Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res. 2006, 4 (2): 61-70. 10.1158/1541-7786.MCR-06-0002.CrossRefPubMed Cairns R, Papandreou I, Denko N: Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res. 2006, 4 (2): 61-70. 10.1158/1541-7786.MCR-06-0002.CrossRefPubMed
17.
go back to reference Guppy M: The hypoxic core: a possible answer to the cancer paradox. Biochemical and biophysical research communications. 2002, 299 (4): 676-680. 10.1016/S0006-291X(02)02710-9.CrossRefPubMed Guppy M: The hypoxic core: a possible answer to the cancer paradox. Biochemical and biophysical research communications. 2002, 299 (4): 676-680. 10.1016/S0006-291X(02)02710-9.CrossRefPubMed
18.
go back to reference Vaupel P: Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in radiation oncology. 2004, 14 (3): 198-206. 10.1016/j.semradonc.2004.04.008.CrossRefPubMed Vaupel P: Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in radiation oncology. 2004, 14 (3): 198-206. 10.1016/j.semradonc.2004.04.008.CrossRefPubMed
19.
go back to reference Campbell RB, Ying B, Kuesters GM, Hemphill R: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. Journal of pharmaceutical sciences. 2009, 98 (2): 411-429. 10.1002/jps.21458.CrossRefPubMed Campbell RB, Ying B, Kuesters GM, Hemphill R: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. Journal of pharmaceutical sciences. 2009, 98 (2): 411-429. 10.1002/jps.21458.CrossRefPubMed
20.
go back to reference Preise D, Mazor O, Koudinova N, Liscovitch M, Scherz A, Salomon Y: Bypass of tumor drug resistance by antivascular therapy. Neoplasia (New York, NY). 2003, 5 (6): 475-480.CrossRef Preise D, Mazor O, Koudinova N, Liscovitch M, Scherz A, Salomon Y: Bypass of tumor drug resistance by antivascular therapy. Neoplasia (New York, NY). 2003, 5 (6): 475-480.CrossRef
21.
go back to reference Cosse JP, Michiels C: Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-cancer agents in medicinal chemistry. 2008, 8 (7): 790-797.CrossRefPubMed Cosse JP, Michiels C: Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-cancer agents in medicinal chemistry. 2008, 8 (7): 790-797.CrossRefPubMed
22.
go back to reference Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nature reviews. 2002, 2 (1): 38-47. 10.1038/nrc704.PubMed Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nature reviews. 2002, 2 (1): 38-47. 10.1038/nrc704.PubMed
23.
go back to reference Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell death and differentiation. 2008, 15 (4): 678-685. 10.1038/cdd.2008.21.PubMedCentralCrossRefPubMed Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell death and differentiation. 2008, 15 (4): 678-685. 10.1038/cdd.2008.21.PubMedCentralCrossRefPubMed
24.
go back to reference Semenza GL: Targeting HIF-1 for cancer therapy. Nature reviews. 2003, 3 (10): 721-732. 10.1038/nrc1187.PubMed Semenza GL: Targeting HIF-1 for cancer therapy. Nature reviews. 2003, 3 (10): 721-732. 10.1038/nrc1187.PubMed
25.
go back to reference Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Kohler M: Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochimica et biophysica acta. 2008, 1783 (3): 394-404. 10.1016/j.bbamcr.2007.12.006.CrossRefPubMed Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Kohler M: Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochimica et biophysica acta. 2008, 1783 (3): 394-404. 10.1016/j.bbamcr.2007.12.006.CrossRefPubMed
26.
go back to reference Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. Journal of molecular medicine (Berlin, Germany). 2007, 85 (12): 1301-1307.CrossRef Brahimi-Horn MC, Chiche J, Pouyssegur J: Hypoxia and cancer. Journal of molecular medicine (Berlin, Germany). 2007, 85 (12): 1301-1307.CrossRef
27.
go back to reference Hockel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute. 2001, 93 (4): 266-276. 10.1093/jnci/93.4.266.CrossRefPubMed Hockel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute. 2001, 93 (4): 266-276. 10.1093/jnci/93.4.266.CrossRefPubMed
28.
go back to reference Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M: Tumor hypoxia: a target for selective cancer therapy. Cancer science. 2003, 94 (12): 1021-1028. 10.1111/j.1349-7006.2003.tb01395.x.CrossRefPubMed Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M: Tumor hypoxia: a target for selective cancer therapy. Cancer science. 2003, 94 (12): 1021-1028. 10.1111/j.1349-7006.2003.tb01395.x.CrossRefPubMed
29.
go back to reference Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D: Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer treatment reviews. 2003, 29 (4): 297-307. 10.1016/S0305-7372(03)00003-3.CrossRefPubMed Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D: Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer treatment reviews. 2003, 29 (4): 297-307. 10.1016/S0305-7372(03)00003-3.CrossRefPubMed
30.
go back to reference Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M: Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J. 2001, 15 (7): 1312-1314.PubMed Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M: Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J. 2001, 15 (7): 1312-1314.PubMed
31.
go back to reference Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR: Transcriptional responses to intermittent hypoxia. Respiratory physiology & neurobiology. 2008, 164 (1-2): 277-281.CrossRef Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR: Transcriptional responses to intermittent hypoxia. Respiratory physiology & neurobiology. 2008, 164 (1-2): 277-281.CrossRef
32.
go back to reference Semenza GL: Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB life. 2008, 60 (9): 591-597. 10.1002/iub.93.CrossRefPubMed Semenza GL: Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB life. 2008, 60 (9): 591-597. 10.1002/iub.93.CrossRefPubMed
33.
go back to reference Liu H, Savaraj N, Priebe W, Lampidis TJ: Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical pharmacology. 2002, 64 (12): 1745-1751. 10.1016/S0006-2952(02)01456-9.CrossRefPubMed Liu H, Savaraj N, Priebe W, Lampidis TJ: Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical pharmacology. 2002, 64 (12): 1745-1751. 10.1016/S0006-2952(02)01456-9.CrossRefPubMed
34.
go back to reference Lu H, Forbes RA, Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of biological chemistry. 2002, 277 (26): 23111-23115. 10.1074/jbc.M202487200.CrossRefPubMed Lu H, Forbes RA, Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of biological chemistry. 2002, 277 (26): 23111-23115. 10.1074/jbc.M202487200.CrossRefPubMed
35.
go back to reference Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB: The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes & development. 2007, 21 (9): 1037-1049.CrossRef Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB: The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes & development. 2007, 21 (9): 1037-1049.CrossRef
36.
go back to reference Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia (New York, NY). 2005, 7 (4): 324-330.CrossRef Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia (New York, NY). 2005, 7 (4): 324-330.CrossRef
37.
go back to reference Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature reviews. 2004, 4 (11): 891-899. 10.1038/nrc1478.PubMed Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature reviews. 2004, 4 (11): 891-899. 10.1038/nrc1478.PubMed
38.
go back to reference Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochemical pharmacology. 2002, 64 (5-6): 993-998. 10.1016/S0006-2952(02)01168-1.CrossRefPubMed Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochemical pharmacology. 2002, 64 (5-6): 993-998. 10.1016/S0006-2952(02)01168-1.CrossRefPubMed
39.
go back to reference Lopez-Lazaro M: The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?. Anti-cancer agents in medicinal chemistry. 2008, 8 (3): 305-312. 10.2174/187152008783961932.CrossRefPubMed Lopez-Lazaro M: The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?. Anti-cancer agents in medicinal chemistry. 2008, 8 (3): 305-312. 10.2174/187152008783961932.CrossRefPubMed
40.
go back to reference Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001, 21 (10): 3436-3444. 10.1128/MCB.21.10.3436-3444.2001.PubMedCentralCrossRefPubMed Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001, 21 (10): 3436-3444. 10.1128/MCB.21.10.3436-3444.2001.PubMedCentralCrossRefPubMed
41.
go back to reference Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. Journal of bioenergetics and biomembranes. 2007, 39 (3): 231-234. 10.1007/s10863-007-9081-2.CrossRefPubMed Semenza GL: HIF-1 mediates the Warburg effect in clear cell renal carcinoma. Journal of bioenergetics and biomembranes. 2007, 39 (3): 231-234. 10.1007/s10863-007-9081-2.CrossRefPubMed
42.
go back to reference Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004, 84 (6): 1014-1020. 10.1016/j.ygeno.2004.08.010.CrossRefPubMed Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004, 84 (6): 1014-1020. 10.1016/j.ygeno.2004.08.010.CrossRefPubMed
43.
go back to reference Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021.CrossRefPubMed Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021.CrossRefPubMed
44.
go back to reference Warburg O: On respiratory impairment in cancer cells. Science (New York, NY). 1956, 124 (3215): 269-270. Warburg O: On respiratory impairment in cancer cells. Science (New York, NY). 1956, 124 (3215): 269-270.
45.
46.
go back to reference Schumacker PT: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer cell. 2006, 10 (3): 175-176. 10.1016/j.ccr.2006.08.015.CrossRefPubMed Schumacker PT: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer cell. 2006, 10 (3): 175-176. 10.1016/j.ccr.2006.08.015.CrossRefPubMed
47.
go back to reference Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journal of bioenergetics and biomembranes. 2007, 39 (3): 211-222. 10.1007/s10863-007-9094-x.CrossRefPubMed Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journal of bioenergetics and biomembranes. 2007, 39 (3): 211-222. 10.1007/s10863-007-9094-x.CrossRefPubMed
48.
go back to reference Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC: Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol. 2002, 55 (5): 294-299. 10.1136/mp.55.5.294.PubMedCentralCrossRefPubMed Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC: Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol. 2002, 55 (5): 294-299. 10.1136/mp.55.5.294.PubMedCentralCrossRefPubMed
49.
go back to reference Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M: The tumor suppressor function of mitochondria: Translation into the clinics. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2009, 1792 (12): 1145-1150. 10.1016/j.bbadis.2009.01.006.CrossRef Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M: The tumor suppressor function of mitochondria: Translation into the clinics. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2009, 1792 (12): 1145-1150. 10.1016/j.bbadis.2009.01.006.CrossRef
50.
go back to reference Smaldone MC, Maranchie JK: Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urologic oncology. 2009, 27 (3): 238-245.CrossRefPubMed Smaldone MC, Maranchie JK: Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urologic oncology. 2009, 27 (3): 238-245.CrossRefPubMed
51.
go back to reference Ohta S: Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene. 2006, 25 (34): 4768-4776. 10.1038/sj.onc.1209602.CrossRefPubMed Ohta S: Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene. 2006, 25 (34): 4768-4776. 10.1038/sj.onc.1209602.CrossRefPubMed
52.
go back to reference Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25 (34): 4633-4646. 10.1038/sj.onc.1209597.CrossRefPubMed Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25 (34): 4633-4646. 10.1038/sj.onc.1209597.CrossRefPubMed
53.
go back to reference Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer cell. 2009, 15 (3): 232-239. 10.1016/j.ccr.2009.01.021.PubMedCentralCrossRefPubMed Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer cell. 2009, 15 (3): 232-239. 10.1016/j.ccr.2009.01.021.PubMedCentralCrossRefPubMed
54.
go back to reference Loges S, Mazzone M, Hohensinner P, Carmeliet P: Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer cell. 2009, 15 (3): 167-170. 10.1016/j.ccr.2009.02.007.CrossRefPubMed Loges S, Mazzone M, Hohensinner P, Carmeliet P: Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer cell. 2009, 15 (3): 167-170. 10.1016/j.ccr.2009.02.007.CrossRefPubMed
55.
go back to reference Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15 (3): 220-231. 10.1016/j.ccr.2009.01.027.PubMedCentralCrossRefPubMed Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15 (3): 220-231. 10.1016/j.ccr.2009.01.027.PubMedCentralCrossRefPubMed
Metadata
Title
Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning
Authors
Lara Milane
Zhenfeng Duan
Mansoor Amiji
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2011
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-11-3

Other articles of this Issue 1/2011

Cancer Cell International 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine