Skip to main content
Top
Published in: Journal of Gastroenterology 2/2016

01-02-2016 | Review

Role of gastrointestinal hormones in feeding behavior and obesity treatment

Authors: Timothy Sean Kairupan, Haruka Amitani, Kai-Chun Cheng, Joshua Runtuwene, Akihiro Asakawa, Akio Inui

Published in: Journal of Gastroenterology | Issue 2/2016

Login to get access

Abstract

Food intake regulation is generally evaluated by many aspects consisting of complex mechanisms, including homeostatic regulatory mechanism, which is based on negative feedback, and hedonic regulatory mechanism, which is driven by a reward system. One important aspect of food intake regulation is the peripheral hormones that are secreted from the gastrointestinal tract. These hormones are secreted from enteroendocrine cells as feedback to nutrient and energy intake, and will communicate with the brain directly or via the vagus nerve. Gastrointestinal hormones are very crucial in maintaining a steady body weight, despite variations in nutrient intake and energy expenditure. In this review, we provide an overview of the regulation of feeding behavior by gut hormones, and its role in obesity treatments.
Literature
1.
go back to reference Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the US: 1990–1998. Diabetes Care. 2000;23:1278–83.PubMedCrossRef Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the US: 1990–1998. Diabetes Care. 2000;23:1278–83.PubMedCrossRef
2.
go back to reference Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology. 2012;63:46–56.PubMedCrossRef Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology. 2012;63:46–56.PubMedCrossRef
3.
go back to reference Ahlman H, Nilsson O. The gut as the largest endocrine organ in the body. Ann Oncol. 2001;12(Suppl 2):S63–8.PubMedCrossRef Ahlman H, Nilsson O. The gut as the largest endocrine organ in the body. Ann Oncol. 2001;12(Suppl 2):S63–8.PubMedCrossRef
4.
go back to reference Peruzzo B, Pastor FE, Blázquez JL, et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000;132:10–26.PubMedCrossRef Peruzzo B, Pastor FE, Blázquez JL, et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000;132:10–26.PubMedCrossRef
5.
go back to reference Schaeffer M, Hodson DJ, Mollard P. The blood-brain barrier as a regulator of the gut-brain axis. Front Horm Res. 2014;42:29–49.PubMedCrossRef Schaeffer M, Hodson DJ, Mollard P. The blood-brain barrier as a regulator of the gut-brain axis. Front Horm Res. 2014;42:29–49.PubMedCrossRef
6.
go back to reference Porte D, Baskin DG, Schwartz MW. Leptin and insulin action in the central nervous system. Nutr Rev. 2002;60:S20–9.PubMedCrossRef Porte D, Baskin DG, Schwartz MW. Leptin and insulin action in the central nervous system. Nutr Rev. 2002;60:S20–9.PubMedCrossRef
7.
go back to reference Simpson KA, Martin NM, Bloom SR. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol. 2009;53:120–8.PubMedCrossRef Simpson KA, Martin NM, Bloom SR. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol. 2009;53:120–8.PubMedCrossRef
8.
go back to reference Sainsbury A, Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol Cell Endocrinol. 2010;316:109–19.PubMedCrossRef Sainsbury A, Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol Cell Endocrinol. 2010;316:109–19.PubMedCrossRef
9.
go back to reference Bewick GA, Dhillo WS, Darch SJ, et al. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) and agouti-related protein (AgRP) neurons coexpress the NOP1 receptor and nociceptin alters CART and AgRP release. Endocrinology. 2005;146:3526–34.PubMedCrossRef Bewick GA, Dhillo WS, Darch SJ, et al. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) and agouti-related protein (AgRP) neurons coexpress the NOP1 receptor and nociceptin alters CART and AgRP release. Endocrinology. 2005;146:3526–34.PubMedCrossRef
10.
go back to reference Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998;95:15043–8.PubMedCentralPubMedCrossRef Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998;95:15043–8.PubMedCentralPubMedCrossRef
11.
go back to reference Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1:271–2.PubMedCrossRef Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1:271–2.PubMedCrossRef
12.
go back to reference Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.PubMedCrossRef Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.PubMedCrossRef
13.
go back to reference Schwartz MW, Woods SC, Jr DP, et al. Central nervous system control of food intake. Nature 2000;404SChwa:661–671. Schwartz MW, Woods SC, Jr DP, et al. Central nervous system control of food intake. Nature 2000;404SChwa:661–671.
14.
go back to reference Jobst EE, Enriori PJ, Cowley MA. The electrophysiology of feeding circuits. Trends Endocrinol Metab. 2004;15:488–99.PubMedCrossRef Jobst EE, Enriori PJ, Cowley MA. The electrophysiology of feeding circuits. Trends Endocrinol Metab. 2004;15:488–99.PubMedCrossRef
15.
go back to reference Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis. 2008;18:158–68.PubMedCrossRef Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis. 2008;18:158–68.PubMedCrossRef
16.
go back to reference Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRef Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRef
17.
go back to reference Hosoda H, Kojima M, Mizushima T, et al. Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem. 2003;278:64–70.PubMedCrossRef Hosoda H, Kojima M, Mizushima T, et al. Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem. 2003;278:64–70.PubMedCrossRef
18.
go back to reference Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–61.PubMed Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–61.PubMed
19.
go back to reference Guan X, Yu H, Palyha O, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res. 1997;48:23–9.PubMedCrossRef Guan X, Yu H, Palyha O, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res. 1997;48:23–9.PubMedCrossRef
20.
go back to reference Willesen MG, Kristensen P, Rømer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70:306–16.PubMedCrossRef Willesen MG, Kristensen P, Rømer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70:306–16.PubMedCrossRef
21.
go back to reference Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA Levels and body weight in rats. Diabetes. 2001;50:2438–43.PubMedCrossRef Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA Levels and body weight in rats. Diabetes. 2001;50:2438–43.PubMedCrossRef
22.
go back to reference Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.PubMedCrossRef Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.PubMedCrossRef
23.
24.
go back to reference Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–7.PubMedCrossRef Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–7.PubMedCrossRef
25.
go back to reference Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.PubMedCrossRef Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.PubMedCrossRef
26.
go back to reference Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.PubMedCrossRef Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.PubMedCrossRef
27.
go back to reference Pusztai P, Sarman B, Ruzicska E, et al. Ghrelin: a new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism. Diabetes Metab Res Rev. 2008;24:343–52.PubMedCrossRef Pusztai P, Sarman B, Ruzicska E, et al. Ghrelin: a new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism. Diabetes Metab Res Rev. 2008;24:343–52.PubMedCrossRef
28.
go back to reference Cummings DE. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav. 2006;89:71–84.PubMedCrossRef Cummings DE. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav. 2006;89:71–84.PubMedCrossRef
29.
go back to reference Cheng K-C, Li Y-L, Asakawa A, Inui A. The role of ghrelin in energy homeostasis and its potential clinical relevance (review). Int J Mol Med. 2010;26:771–8.PubMed Cheng K-C, Li Y-L, Asakawa A, Inui A. The role of ghrelin in energy homeostasis and its potential clinical relevance (review). Int J Mol Med. 2010;26:771–8.PubMed
30.
go back to reference Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123:1120–8.PubMedCrossRef Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123:1120–8.PubMedCrossRef
31.
go back to reference Williams DL, Grill HJ, Cummings DE, Kaplan JM. Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology. 2003;144:5184–7.PubMedCrossRef Williams DL, Grill HJ, Cummings DE, Kaplan JM. Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology. 2003;144:5184–7.PubMedCrossRef
32.
go back to reference Le Roux CW, Neary NM, Halsey TJ, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005;90:4521–4.PubMedCrossRef Le Roux CW, Neary NM, Halsey TJ, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005;90:4521–4.PubMedCrossRef
33.
go back to reference Roth KA, Kim S, Gordon JI. Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol Gastrointest Liver Physiol. 1992;263:G174–80. Roth KA, Kim S, Gordon JI. Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol Gastrointest Liver Physiol. 1992;263:G174–80.
34.
go back to reference Lieverse RJ, Jansen JB, Masclee AA, et al. Effect of a low dose of intraduodenal fat on satiety in humans: studies using the type A cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35:501–5.PubMedCentralPubMedCrossRef Lieverse RJ, Jansen JB, Masclee AA, et al. Effect of a low dose of intraduodenal fat on satiety in humans: studies using the type A cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35:501–5.PubMedCentralPubMedCrossRef
35.
go back to reference Liddle RA, Goldfine ID, Rosen MS, et al. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest. 1985;75:1144–52.PubMedCentralPubMedCrossRef Liddle RA, Goldfine ID, Rosen MS, et al. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest. 1985;75:1144–52.PubMedCentralPubMedCrossRef
36.
go back to reference Crespo CS, Cachero AP, Jiménez LP, et al. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:1–13. Crespo CS, Cachero AP, Jiménez LP, et al. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:1–13.
37.
go back to reference Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature. 1973;245:323–5.PubMedCrossRef Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature. 1973;245:323–5.PubMedCrossRef
38.
go back to reference Antin J, Gibbs J, Holt J, et al. Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J Comp Physiol Psychol. 1975;89:784–90.PubMedCrossRef Antin J, Gibbs J, Holt J, et al. Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J Comp Physiol Psychol. 1975;89:784–90.PubMedCrossRef
39.
go back to reference Kissileff HR, Pi-Sunyer X, Thornton J, Smith GP. C-terminal decreases octapeptide food intake of cholecystokinin. Am J Clin Nutr 1981;154–160. Kissileff HR, Pi-Sunyer X, Thornton J, Smith GP. C-terminal decreases octapeptide food intake of cholecystokinin. Am J Clin Nutr 1981;154–160.
40.
go back to reference Lieverse RJ, Jansen JB, Masclee AM, Lamers CB. Satiety effects of cholecystokinin in humans. Gastroenterology. 1994;106:1451–4.PubMed Lieverse RJ, Jansen JB, Masclee AM, Lamers CB. Satiety effects of cholecystokinin in humans. Gastroenterology. 1994;106:1451–4.PubMed
41.
go back to reference Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.PubMedCrossRef Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.PubMedCrossRef
42.
go back to reference Cantor P, Rehfeld JF. Cholecystokinin in pig plasma: release of components devoid of a bioactive COOH-terminus. Am J Physiol Gastrointest Liver Physiol. 1989;256:G53–61. Cantor P, Rehfeld JF. Cholecystokinin in pig plasma: release of components devoid of a bioactive COOH-terminus. Am J Physiol Gastrointest Liver Physiol. 1989;256:G53–61.
43.
go back to reference Luo J, Hu Y, Kong W, Yang M. Evaluation and structure-activity relationship analysis of a new series of arylnaphthalene lignans as potential anti-tumor agents. PLoS One. 2014;9:e93516.PubMedCentralPubMedCrossRef Luo J, Hu Y, Kong W, Yang M. Evaluation and structure-activity relationship analysis of a new series of arylnaphthalene lignans as potential anti-tumor agents. PLoS One. 2014;9:e93516.PubMedCentralPubMedCrossRef
44.
go back to reference Ji Z, Hadac EM, Henne RM, et al. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. J Biol Chem. 1997;272:24393–401.PubMedCrossRef Ji Z, Hadac EM, Henne RM, et al. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. J Biol Chem. 1997;272:24393–401.PubMedCrossRef
45.
go back to reference Overduin J, Gibbs J, Cummings DE, Reeve JR. CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation. Peptides. 2014;54:71–80.PubMedCentralPubMedCrossRef Overduin J, Gibbs J, Cummings DE, Reeve JR. CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation. Peptides. 2014;54:71–80.PubMedCentralPubMedCrossRef
46.
go back to reference Sayegh AI, Washington MC, Raboin SJ, et al. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity. Peptides. 2014;55:120–5.PubMedCrossRef Sayegh AI, Washington MC, Raboin SJ, et al. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity. Peptides. 2014;55:120–5.PubMedCrossRef
47.
go back to reference Moran TH, Robinson PH, Goldrich MS, McHugh PR. Two brain cholecystokinin receptors:implications for behavioral actions. Brain Res. 1986;362:175–9.PubMedCrossRef Moran TH, Robinson PH, Goldrich MS, McHugh PR. Two brain cholecystokinin receptors:implications for behavioral actions. Brain Res. 1986;362:175–9.PubMedCrossRef
48.
go back to reference Beglinger C, Degen L, Matzinger D, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1149–54.PubMed Beglinger C, Degen L, Matzinger D, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1149–54.PubMed
49.
go back to reference Zittel TT, Glatzle J, Kreis ME, et al. C-fos protein expression in the nucleus of the solitary tract correlates with cholecystokinin dose injected and food intake in rats. Brain Res. 1999;846:1–11.PubMedCrossRef Zittel TT, Glatzle J, Kreis ME, et al. C-fos protein expression in the nucleus of the solitary tract correlates with cholecystokinin dose injected and food intake in rats. Brain Res. 1999;846:1–11.PubMedCrossRef
50.
go back to reference Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286:G183–8.PubMedCrossRef Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286:G183–8.PubMedCrossRef
52.
go back to reference Smith GP, Jerome C, Cushin BJ, et al. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981;213:1036–7.PubMedCrossRef Smith GP, Jerome C, Cushin BJ, et al. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981;213:1036–7.PubMedCrossRef
53.
go back to reference Joyner K, Smith GP, Gibbs J. Abdominal vagotomy decreases the satiating potency of CCK-8 in sham and real feeding. Am J Physiol. 1993;264:R912–6.PubMed Joyner K, Smith GP, Gibbs J. Abdominal vagotomy decreases the satiating potency of CCK-8 in sham and real feeding. Am J Physiol. 1993;264:R912–6.PubMed
54.
go back to reference Moran TH, Baldessarini AR, Salorio CF, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997;272:R1245–51.PubMed Moran TH, Baldessarini AR, Salorio CF, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997;272:R1245–51.PubMed
55.
go back to reference Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860:1–10.PubMedCrossRef Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860:1–10.PubMedCrossRef
56.
go back to reference Edwards GL, Ladenheim EE, Ritter RC. Dorsomedial hindbrain participation in cholecystokinin-induced satiety. Am J Physiol. 1986;251:R971–7.PubMed Edwards GL, Ladenheim EE, Ritter RC. Dorsomedial hindbrain participation in cholecystokinin-induced satiety. Am J Physiol. 1986;251:R971–7.PubMed
57.
go back to reference Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–8.PubMedCrossRef Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–8.PubMedCrossRef
58.
59.
go back to reference Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.PubMed Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.PubMed
60.
go back to reference Adrian TE, Savage AP, Sagor GR, et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology. 1985;89:494–9.PubMed Adrian TE, Savage AP, Sagor GR, et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology. 1985;89:494–9.PubMed
61.
go back to reference Batterham RL, Heffron H, Kapoor S, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006;4:223–33.PubMedCrossRef Batterham RL, Heffron H, Kapoor S, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006;4:223–33.PubMedCrossRef
62.
go back to reference Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36). Peptides. 1989;10:797–803.PubMedCrossRef Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36). Peptides. 1989;10:797–803.PubMedCrossRef
63.
go back to reference Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept. 1994;51:151–9.PubMedCrossRef Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept. 1994;51:151–9.PubMedCrossRef
64.
go back to reference Grandt D, Teyssen S, Schimiczek M, et al. Novel generation of hormone receptor specificity by amino terminal processing of peptide YY. Biochem Biophys Res Commun. 1992;186:1299–306.PubMedCrossRef Grandt D, Teyssen S, Schimiczek M, et al. Novel generation of hormone receptor specificity by amino terminal processing of peptide YY. Biochem Biophys Res Commun. 1992;186:1299–306.PubMedCrossRef
65.
go back to reference Dumont Y, Fournier A, St-Pierre S, Quirion R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31, Pro34]peptide YY and [125I]peptide YY3-36 as selective Y1 and Y2 radioligands. J Pharmacol Exp Ther. 1995;272:673–80.PubMed Dumont Y, Fournier A, St-Pierre S, Quirion R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31, Pro34]peptide YY and [125I]peptide YY3-36 as selective Y1 and Y2 radioligands. J Pharmacol Exp Ther. 1995;272:673–80.PubMed
66.
go back to reference Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.PubMedCrossRef Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.PubMedCrossRef
67.
go back to reference Challis BG, Pinnock SB, Coll AP, et al. Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun. 2003;311:915–9.PubMedCrossRef Challis BG, Pinnock SB, Coll AP, et al. Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun. 2003;311:915–9.PubMedCrossRef
68.
go back to reference Halatchev IG, Ellacott KLJ, Fan W, Cone RD. Peptide YY3-36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology. 2004;145:2585–90.PubMedCrossRef Halatchev IG, Ellacott KLJ, Fan W, Cone RD. Peptide YY3-36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology. 2004;145:2585–90.PubMedCrossRef
69.
go back to reference Sileno AP, Brandt GC, Spann BM, Quay SC. Lower mean weight after 14 days intravenous administration peptide YY3-36 (PYY3-36) in rabbits. Int J Obes (Lond). 2006;30:68–72.CrossRef Sileno AP, Brandt GC, Spann BM, Quay SC. Lower mean weight after 14 days intravenous administration peptide YY3-36 (PYY3-36) in rabbits. Int J Obes (Lond). 2006;30:68–72.CrossRef
70.
go back to reference Koegler FH, Enriori PJ, Billes SK, et al. Peptide YY(3-36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes. 2005;54:3198–204.PubMedCrossRef Koegler FH, Enriori PJ, Billes SK, et al. Peptide YY(3-36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes. 2005;54:3198–204.PubMedCrossRef
71.
go back to reference Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRef Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRef
72.
go back to reference Talsania T, Anini Y, Siu S, et al. Peripheral exendin-4 and peptide YY 3–36 synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146:3748–56.PubMedCrossRef Talsania T, Anini Y, Siu S, et al. Peripheral exendin-4 and peptide YY 3–36 synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005;146:3748–56.PubMedCrossRef
73.
go back to reference Scott V, Kimura N, Stark JA, Luckman SM. Intravenous peptide YY3-36 and Y2 receptor antagonism in the rat: effects on feeding behaviour. J Neuroendocrinol. 2005;17:452–7.PubMedCrossRef Scott V, Kimura N, Stark JA, Luckman SM. Intravenous peptide YY3-36 and Y2 receptor antagonism in the rat: effects on feeding behaviour. J Neuroendocrinol. 2005;17:452–7.PubMedCrossRef
74.
go back to reference Kanatani A, Mashiko S, Murai N, et al. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology. 2000;141:1011–6.PubMedCrossRef Kanatani A, Mashiko S, Murai N, et al. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology. 2000;141:1011–6.PubMedCrossRef
75.
76.
go back to reference Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY 3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044:127–31.PubMedCrossRef Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY 3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044:127–31.PubMedCrossRef
77.
go back to reference Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–75.PubMedCrossRef Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146:2369–75.PubMedCrossRef
78.
go back to reference Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol. 2003;81:1005–12.PubMedCrossRef Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol. 2003;81:1005–12.PubMedCrossRef
79.
go back to reference Van Der Klaauw AA, Keogh JM, Henning E, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity. 2013;21:1602–7.PubMedCrossRef Van Der Klaauw AA, Keogh JM, Henning E, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity. 2013;21:1602–7.PubMedCrossRef
80.
go back to reference Herrmann C, Göke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–26.PubMedCrossRef Herrmann C, Göke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–26.PubMedCrossRef
81.
go back to reference Orskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes. 1993;42:658–61.PubMedCrossRef Orskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes. 1993;42:658–61.PubMedCrossRef
82.
go back to reference Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.PubMedCrossRef Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.PubMedCrossRef
83.
go back to reference Donahey JC, van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. 1998;779:75–83.PubMedCrossRef Donahey JC, van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. 1998;779:75–83.PubMedCrossRef
84.
go back to reference Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S42–7.PubMedCrossRef Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S42–7.PubMedCrossRef
85.
go back to reference Meeran K, Shea DO, Edwards CMB, et al. Repeated Intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology. 1999;140:244–50.PubMed Meeran K, Shea DO, Edwards CMB, et al. Repeated Intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology. 1999;140:244–50.PubMed
86.
go back to reference Näslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23:304–11.PubMedCrossRef Näslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23:304–11.PubMedCrossRef
88.
go back to reference Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–30.PubMedCrossRef Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–30.PubMedCrossRef
89.
go back to reference Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care. 1999;22:1137–43.PubMedCrossRef Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care. 1999;22:1137–43.PubMedCrossRef
90.
go back to reference Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273:E981–8.PubMed Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273:E981–8.PubMed
92.
go back to reference Imeryüz N, Yeğen BC, Bozkurt A, et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273:G920–7.PubMed Imeryüz N, Yeğen BC, Bozkurt A, et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273:G920–7.PubMed
93.
go back to reference Parkinson JRC, Chaudhri OB, Kuo Y-T, et al. Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage. 2009;44:1022–31.PubMedCrossRef Parkinson JRC, Chaudhri OB, Kuo Y-T, et al. Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage. 2009;44:1022–31.PubMedCrossRef
95.
go back to reference Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology. 2001;142:4244–50.PubMedCrossRef Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology. 2001;142:4244–50.PubMedCrossRef
96.
go back to reference Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology. 2004;145:2687–95.PubMedCrossRef Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology. 2004;145:2687–95.PubMedCrossRef
97.
go back to reference Dakin CL, Small CJ, Park AJ, et al. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab. 2002;283:E1173–7.PubMedCrossRef Dakin CL, Small CJ, Park AJ, et al. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab. 2002;283:E1173–7.PubMedCrossRef
98.
go back to reference Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab. 2003;88:4696–701.PubMedCrossRef Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab. 2003;88:4696–701.PubMedCrossRef
99.
go back to reference Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized. Controlled Trial. Diabetes. 2005;54:2390–5.PubMedCrossRef Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized. Controlled Trial. Diabetes. 2005;54:2390–5.PubMedCrossRef
100.
go back to reference Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30:1729–36.CrossRef Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30:1729–36.CrossRef
101.
go back to reference Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology. 2004;127:546–58.PubMedCrossRef Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology. 2004;127:546–58.PubMedCrossRef
102.
go back to reference Kosinski JR, Hubert J, Carrington PE, et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity. 2012;20:1566–71.PubMedCentralPubMedCrossRef Kosinski JR, Hubert J, Carrington PE, et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity. 2012;20:1566–71.PubMedCentralPubMedCrossRef
103.
go back to reference Chaudhri OB, Parkinson JRC, Kuo Y-T, et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem Biophys Res Commun. 2006;350:298–306.PubMedCrossRef Chaudhri OB, Parkinson JRC, Kuo Y-T, et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem Biophys Res Commun. 2006;350:298–306.PubMedCrossRef
104.
go back to reference Katsuura G, Asakawa A, Inui A. Roles of pancreatic polypeptide in regulation of food intake. Peptides. 2002;23:323–9.PubMedCrossRef Katsuura G, Asakawa A, Inui A. Roles of pancreatic polypeptide in regulation of food intake. Peptides. 2002;23:323–9.PubMedCrossRef
105.
go back to reference Batterham RL, Le Roux CW, Cohen MA, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab. 2003;88:3989–92.PubMedCrossRef Batterham RL, Le Roux CW, Cohen MA, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab. 2003;88:3989–92.PubMedCrossRef
106.
go back to reference Hwa JJ, Witten MB, Williams P, et al. Activation of the NPY Y5 receptor regulates both feeding and energy expenditure. Am J Physiol. 1999;277:R1428–34.PubMed Hwa JJ, Witten MB, Williams P, et al. Activation of the NPY Y5 receptor regulates both feeding and energy expenditure. Am J Physiol. 1999;277:R1428–34.PubMed
107.
go back to reference Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124:1325–36.PubMedCrossRef Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124:1325–36.PubMedCrossRef
108.
go back to reference Michel MC, Beck-Sickinger A, Cox H, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev. 1998;50:143–150. Michel MC, Beck-Sickinger A, Cox H, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev. 1998;50:143–150.
109.
go back to reference Balasubramaniam A, Mullins DE, Lin S, et al. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32-36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem. 2006;49:2661–5.PubMedCrossRef Balasubramaniam A, Mullins DE, Lin S, et al. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32-36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem. 2006;49:2661–5.PubMedCrossRef
110.
go back to reference Westermark GT, Westermark P. Islet amyloid polypeptide and diabetes. Curr Protein Pept Sci. 2013;14:330–7.PubMedCrossRef Westermark GT, Westermark P. Islet amyloid polypeptide and diabetes. Curr Protein Pept Sci. 2013;14:330–7.PubMedCrossRef
111.
go back to reference Cummings DE, Overduin J. Review series gastrointestinal regulation of food intake. Health Care (Don Mills). 2007;117:13–23. Cummings DE, Overduin J. Review series gastrointestinal regulation of food intake. Health Care (Don Mills). 2007;117:13–23.
112.
go back to reference Rushing PA, Hagan MM, Seeley RJ, et al. Amylin: a novel action in the brain to reduce body weight. Endocrinology. 2000;141:850–3.PubMed Rushing PA, Hagan MM, Seeley RJ, et al. Amylin: a novel action in the brain to reduce body weight. Endocrinology. 2000;141:850–3.PubMed
113.
go back to reference Lutz TA, Geary N, Szabady MM, et al. Amylin decreases meal size in rats. Physiol Behav. 1995;58:1197–202.PubMedCrossRef Lutz TA, Geary N, Szabady MM, et al. Amylin decreases meal size in rats. Physiol Behav. 1995;58:1197–202.PubMedCrossRef
114.
go back to reference Chapman I, Parker B, Doran S, et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia. 2005;48:838–48.PubMedCrossRef Chapman I, Parker B, Doran S, et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia. 2005;48:838–48.PubMedCrossRef
115.
go back to reference Lutz TA, Althaus J, Rossi R, Scharrer E. Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol. 1998;274:R1777–82.PubMed Lutz TA, Althaus J, Rossi R, Scharrer E. Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol. 1998;274:R1777–82.PubMed
116.
go back to reference Lutz TA. Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets. 2005;6:181–9.PubMedCrossRef Lutz TA. Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets. 2005;6:181–9.PubMedCrossRef
117.
go back to reference Burke LE, Wang J. Treatment strategies for overweight and obesity. J Nurs Scholarsh. 2011;43:368–75.PubMedCrossRef Burke LE, Wang J. Treatment strategies for overweight and obesity. J Nurs Scholarsh. 2011;43:368–75.PubMedCrossRef
118.
go back to reference Kushner RF. Weight loss strategies for treatment of obesity. Prog Cardiovasc Dis. 2014;56:465–72.PubMedCrossRef Kushner RF. Weight loss strategies for treatment of obesity. Prog Cardiovasc Dis. 2014;56:465–72.PubMedCrossRef
119.
go back to reference Samaranayake NR, Ong KL, Leung RYH, Cheung BMY. Management of Obesity in the National Health and Nutrition Examination Survey (NHANES), 2007–2008. Ann Epidemiol. 2012;22:349–53.PubMedCrossRef Samaranayake NR, Ong KL, Leung RYH, Cheung BMY. Management of Obesity in the National Health and Nutrition Examination Survey (NHANES), 2007–2008. Ann Epidemiol. 2012;22:349–53.PubMedCrossRef
120.
go back to reference Kakkar AK, Dahiya N. Drug treatment of obesity: current status and future prospects. Eur J Intern Med. 2015;26:89–94.PubMedCrossRef Kakkar AK, Dahiya N. Drug treatment of obesity: current status and future prospects. Eur J Intern Med. 2015;26:89–94.PubMedCrossRef
121.
go back to reference Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends Endocrinol Metab. 2010;21:337–44.PubMedCrossRef Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends Endocrinol Metab. 2010;21:337–44.PubMedCrossRef
122.
go back to reference Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28:741–9.PubMedCrossRef Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28:741–9.PubMedCrossRef
123.
go back to reference Akkary E. Bariatric surgery evolution from the malabsorptive to the hormonal era. Obes Surg. 2012;22:827–31.PubMedCrossRef Akkary E. Bariatric surgery evolution from the malabsorptive to the hormonal era. Obes Surg. 2012;22:827–31.PubMedCrossRef
124.
go back to reference Michalakis K, Le Roux C. Gut hormones and leptin: impact on energy control and changes after bariatric surgerywhat the future holds. Obes Surg. 2012;22:1648–57.PubMedCrossRef Michalakis K, Le Roux C. Gut hormones and leptin: impact on energy control and changes after bariatric surgerywhat the future holds. Obes Surg. 2012;22:1648–57.PubMedCrossRef
125.
go back to reference Tsoli M, Chronaiou A, Kehagias I, et al. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9:667–77.PubMedCrossRef Tsoli M, Chronaiou A, Kehagias I, et al. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9:667–77.PubMedCrossRef
126.
go back to reference Dimitriadis E, Daskalakis M, Kampa M, et al. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann Surg. 2013;257:647–54.PubMedCrossRef Dimitriadis E, Daskalakis M, Kampa M, et al. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann Surg. 2013;257:647–54.PubMedCrossRef
127.
go back to reference Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24:241–52.PubMedCentralPubMedCrossRef Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24:241–52.PubMedCentralPubMedCrossRef
128.
go back to reference Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Bailliere’s Best Pract Res Clin Gastroenterol. 2014;28:727–40.CrossRef Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Bailliere’s Best Pract Res Clin Gastroenterol. 2014;28:727–40.CrossRef
129.
go back to reference Stoeckli R, Chanda R, Langer I, Keller U. Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass. Obes Res. 2004;12:346–50.PubMedCrossRef Stoeckli R, Chanda R, Langer I, Keller U. Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass. Obes Res. 2004;12:346–50.PubMedCrossRef
130.
go back to reference Dixon AFR, Dixon JB, O’Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.PubMedCrossRef Dixon AFR, Dixon JB, O’Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.PubMedCrossRef
131.
go back to reference Rodieux F, Giusti V, D’Alessio DA, et al. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring). 2008;16:298–305.CrossRef Rodieux F, Giusti V, D’Alessio DA, et al. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring). 2008;16:298–305.CrossRef
132.
go back to reference Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes. 2009;33:786–95.CrossRef Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes. 2009;33:786–95.CrossRef
133.
go back to reference Krieger AC, Youn H, Modersitzki F, et al. Effects of laparoscopic adjustable gastric banding on sleep and metabolism: a 12-month follow-up study. Int J Gen Med. 2012;5:975–81.PubMedCentralPubMedCrossRef Krieger AC, Youn H, Modersitzki F, et al. Effects of laparoscopic adjustable gastric banding on sleep and metabolism: a 12-month follow-up study. Int J Gen Med. 2012;5:975–81.PubMedCentralPubMedCrossRef
134.
go back to reference Borg CM, Le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRef Borg CM, Le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRef
135.
go back to reference Le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedCentralPubMedCrossRef Le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedCentralPubMedCrossRef
136.
go back to reference Pournaras DJ, Osborne A, Hawkins SC, et al. The gut hormone response following roux-en-Y gastric bypass: cross-sectional and prospective study. Obes Surg. 2010;20:56–60.PubMedCrossRef Pournaras DJ, Osborne A, Hawkins SC, et al. The gut hormone response following roux-en-Y gastric bypass: cross-sectional and prospective study. Obes Surg. 2010;20:56–60.PubMedCrossRef
137.
go back to reference Ockander L, Hedenbro JL, Rehfeld JF, Sjölund K. Jejunoileal bypass changes the duodenal cholecystokinin and somatostatin cell density. Obes Surg. 2003;13:584–90.PubMedCrossRef Ockander L, Hedenbro JL, Rehfeld JF, Sjölund K. Jejunoileal bypass changes the duodenal cholecystokinin and somatostatin cell density. Obes Surg. 2003;13:584–90.PubMedCrossRef
138.
go back to reference Buchan AM, Pederson RA, Koop I, et al. Morphological and functional alterations to a sub-group of regulatory peptides in human pancreas and intestine after jejuno-ileal bypass. Int J Obes Relat Metab Disord. 1993;17:109–13.PubMed Buchan AM, Pederson RA, Koop I, et al. Morphological and functional alterations to a sub-group of regulatory peptides in human pancreas and intestine after jejuno-ileal bypass. Int J Obes Relat Metab Disord. 1993;17:109–13.PubMed
139.
go back to reference Näslund E, Grybäck P, Hellström PM, et al. Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord. 1997;21:387–92.PubMedCrossRef Näslund E, Grybäck P, Hellström PM, et al. Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord. 1997;21:387–92.PubMedCrossRef
141.
go back to reference Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–35.PubMedCrossRef Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–35.PubMedCrossRef
142.
go back to reference DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide(Exendin-4) on glycemic control and weight over 30 Weeks in metformin-treated patients with Type 2 diabetes. Diabetes Care. 2005;28:1092–100.PubMedCrossRef DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide(Exendin-4) on glycemic control and weight over 30 Weeks in metformin-treated patients with Type 2 diabetes. Diabetes Care. 2005;28:1092–100.PubMedCrossRef
143.
go back to reference Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;28:1083–91.PubMedCrossRef Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;28:1083–91.PubMedCrossRef
144.
go back to reference Steinert R, Poller B, Castelli M. Orally administered glucagon-like peptide-1 affects glucose homeostasis following an oral glucose tolerance test in healthy male subjects. Clin Pharmacol. 2009;86:644–50. Steinert R, Poller B, Castelli M. Orally administered glucagon-like peptide-1 affects glucose homeostasis following an oral glucose tolerance test in healthy male subjects. Clin Pharmacol. 2009;86:644–50.
145.
go back to reference Jang H-J, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA. 2007;104:15069–74.PubMedCentralPubMedCrossRef Jang H-J, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA. 2007;104:15069–74.PubMedCentralPubMedCrossRef
146.
go back to reference Steinert RE, Gerspach AC, Gutmann H, et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr. 2011;30:524–32.PubMedCrossRef Steinert RE, Gerspach AC, Gutmann H, et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr. 2011;30:524–32.PubMedCrossRef
Metadata
Title
Role of gastrointestinal hormones in feeding behavior and obesity treatment
Authors
Timothy Sean Kairupan
Haruka Amitani
Kai-Chun Cheng
Joshua Runtuwene
Akihiro Asakawa
Akio Inui
Publication date
01-02-2016
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 2/2016
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-015-1118-4

Other articles of this Issue 2/2016

Journal of Gastroenterology 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.