Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 3/2018

01-12-2018

Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route

Authors: Ihab Elsokkari, John L. Sapp, Steve Doucette, Ratika Parkash, Christopher J. Gray, Martin J. Gardner, Ciorsti Macintyre, Amir M. AbdelWahab

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 3/2018

Login to get access

Abstract

Background

Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified.

Patients and methods

Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV.

Results

Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not statistically significant (20 vs 15 g; P = 0.063).

Conclusions

In patients with ischemic cardiomyopathy, a mean contact force of 10 g or more within the scar zone had the best correlation with electrical unexcitability post ablation in our study. The retrograde aortic approach was associated with better contact force over the anterior wall while use of a transseptal approach had better contact force over the lateral wall.
Literature
1.
go back to reference Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007;357(26):2657–65.CrossRef Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007;357(26):2657–65.CrossRef
2.
go back to reference Kuck K-H, Schaumann A, Eckardt L, Willems S, Ventura R, Delacrétaz E, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet. 2010;375(9708):31–40.CrossRef Kuck K-H, Schaumann A, Eckardt L, Willems S, Ventura R, Delacrétaz E, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet. 2010;375(9708):31–40.CrossRef
3.
go back to reference Sapp JL, Wells GA, Parkash R, Stevenson WG, Blier L, Sarrazin J-F, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016;2016(375):111–21.CrossRef Sapp JL, Wells GA, Parkash R, Stevenson WG, Blier L, Sarrazin J-F, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016;2016(375):111–21.CrossRef
5.
go back to reference Sapp JL, Beeckler C, Pike R, Parkash R, Gray CJ, Zeppenfeld K, et al. Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia clinical Perspective. Circulation. 2013;128(21):2289–95.CrossRef Sapp JL, Beeckler C, Pike R, Parkash R, Gray CJ, Zeppenfeld K, et al. Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia clinical Perspective. Circulation. 2013;128(21):2289–95.CrossRef
6.
go back to reference Abdelwahab A, Sapp JL. NaviStar® ThermoCool® catheter for ventricular tachycardia. Expert Rev Med Devices. 2007;4(3):307–14.CrossRef Abdelwahab A, Sapp JL. NaviStar® ThermoCool® catheter for ventricular tachycardia. Expert Rev Med Devices. 2007;4(3):307–14.CrossRef
7.
go back to reference Gizurarson S, Spears D, Sivagangabalan G, Farid T, Ha AC, Massé S, et al. Bipolar ablation for deep intra-myocardial circuits: human ex vivo development and in vivo experience. Europace. 2014;16(11):1684–8.CrossRef Gizurarson S, Spears D, Sivagangabalan G, Farid T, Ha AC, Massé S, et al. Bipolar ablation for deep intra-myocardial circuits: human ex vivo development and in vivo experience. Europace. 2014;16(11):1684–8.CrossRef
8.
go back to reference Kay GN, Epstein AE, Bubien RS, Anderson PG, Dailey SM, Plumb VJ. Intracoronary ethanol ablation for the treatment of recurrent sustained ventricular tachycardia. J Am Coll Cardiol. 1992;19(1):159–68.CrossRef Kay GN, Epstein AE, Bubien RS, Anderson PG, Dailey SM, Plumb VJ. Intracoronary ethanol ablation for the treatment of recurrent sustained ventricular tachycardia. J Am Coll Cardiol. 1992;19(1):159–68.CrossRef
9.
go back to reference Matía Francés R, Hernández Madrid A, Delgado A, Carrizo L, Pindado C, Moro Serrano C, et al. Characterization of the impact of catheter–tissue contact force in lesion formation during cavo-tricuspid isthmus ablation in an experimental swine model. Europace. 2013;16(11):1679–83.CrossRef Matía Francés R, Hernández Madrid A, Delgado A, Carrizo L, Pindado C, Moro Serrano C, et al. Characterization of the impact of catheter–tissue contact force in lesion formation during cavo-tricuspid isthmus ablation in an experimental swine model. Europace. 2013;16(11):1679–83.CrossRef
10.
go back to reference Kimura M, Sasaki S, Owada S, Horiuchi D, Sasaki K, Itoh T, et al. Comparison of lesion formation between contact force-guided and non-guided circumferential pulmonary vein isolation: a prospective, randomized study. Heart Rhythm. 2014;11(6):984–91.CrossRef Kimura M, Sasaki S, Owada S, Horiuchi D, Sasaki K, Itoh T, et al. Comparison of lesion formation between contact force-guided and non-guided circumferential pulmonary vein isolation: a prospective, randomized study. Heart Rhythm. 2014;11(6):984–91.CrossRef
11.
go back to reference Jarman JW, Panikker S, Das M, Wynn GJ, Ullah W, Kontogeorgis A, et al. Relationship between contact force sensing technology and medium-term outcome of atrial fibrillation ablation: a multicenter study of 600 patients. J Cardiovasc Electrophysiol. 2015;26(4):378–84.CrossRef Jarman JW, Panikker S, Das M, Wynn GJ, Ullah W, Kontogeorgis A, et al. Relationship between contact force sensing technology and medium-term outcome of atrial fibrillation ablation: a multicenter study of 600 patients. J Cardiovasc Electrophysiol. 2015;26(4):378–84.CrossRef
12.
go back to reference Nakagawa H, Jackman WM. The role of contact force in atrial fibrillation ablation. J Atr Fibrillation. 2014;7(1) Nakagawa H, Jackman WM. The role of contact force in atrial fibrillation ablation. J Atr Fibrillation. 2014;7(1)
13.
go back to reference Shurrab M, Di Biase L, Briceno DF, Kaoutskaia A, Haj-Yahia S, Newman D, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4(9):e002476.CrossRef Shurrab M, Di Biase L, Briceno DF, Kaoutskaia A, Haj-Yahia S, Newman D, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4(9):e002476.CrossRef
14.
go back to reference Calkins H, Hindricks G, Cappato R, Kim Y-H, Saad EB, Aguinaga L, et al. HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm. 2017;14(10):e275–444. Calkins H, Hindricks G, Cappato R, Kim Y-H, Saad EB, Aguinaga L, et al. HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm. 2017;14(10):e275–444.
16.
go back to reference Ikeda A, Nakagawa H, Lambert H, Shah DC, Fonck E, Yulzari A, et al. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart clinical perspective. Circ Arrhythm Electrophysiol. 2014;7(6):1174–80.CrossRef Ikeda A, Nakagawa H, Lambert H, Shah DC, Fonck E, Yulzari A, et al. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart clinical perspective. Circ Arrhythm Electrophysiol. 2014;7(6):1174–80.CrossRef
17.
go back to reference Hendriks AA, Akca F, DABIRI ABKENARI L, Khan M, Bhagwandien R, YAP SC, et al. Safety and clinical outcome of catheter ablation of ventricular arrhythmias using contact force sensing: consecutive case series. J Cardiovasc Electrophysiol. 2015;26(11):1224–9.CrossRef Hendriks AA, Akca F, DABIRI ABKENARI L, Khan M, Bhagwandien R, YAP SC, et al. Safety and clinical outcome of catheter ablation of ventricular arrhythmias using contact force sensing: consecutive case series. J Cardiovasc Electrophysiol. 2015;26(11):1224–9.CrossRef
18.
go back to reference Santangeli P, Frankel DS, Marchlinski FE. End points for ablation of scar-related ventricular tachycardia. Circ Arrhythm Electrophysiol. 2014;7(5):949–60.CrossRef Santangeli P, Frankel DS, Marchlinski FE. End points for ablation of scar-related ventricular tachycardia. Circ Arrhythm Electrophysiol. 2014;7(5):949–60.CrossRef
19.
go back to reference Soejima K, Stevenson WG, Maisel WH, Sapp JL, Epstein LM. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation. Circulation. 2002;106(13):1678–83.CrossRef Soejima K, Stevenson WG, Maisel WH, Sapp JL, Epstein LM. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation. Circulation. 2002;106(13):1678–83.CrossRef
20.
go back to reference Kumar S, Romero J, Mehta NK, Fujii A, Kapur S, Baldinger SH, et al. Long-term outcomes after catheter ablation of ventricular tachycardia in patients with and without structural heart disease. Heart Rhythm. 2016;13(10):1957–63.CrossRef Kumar S, Romero J, Mehta NK, Fujii A, Kapur S, Baldinger SH, et al. Long-term outcomes after catheter ablation of ventricular tachycardia in patients with and without structural heart disease. Heart Rhythm. 2016;13(10):1957–63.CrossRef
21.
go back to reference Kosmidou I, Houde-Walter H, Foley L, Michaud G. Loss of pace capture after radiofrequency application predicts the formation of uniform transmural lesions. Europace. 2013;15(4):601–6.CrossRef Kosmidou I, Houde-Walter H, Foley L, Michaud G. Loss of pace capture after radiofrequency application predicts the formation of uniform transmural lesions. Europace. 2013;15(4):601–6.CrossRef
22.
go back to reference Sapp JL, Soejima K, Cooper JM, Epstein LM, Stevenson WG. Ablation lesion size correlates with pacing threshold. Pacing Clin Electrophysiol. 2004;27(7):933–7.CrossRef Sapp JL, Soejima K, Cooper JM, Epstein LM, Stevenson WG. Ablation lesion size correlates with pacing threshold. Pacing Clin Electrophysiol. 2004;27(7):933–7.CrossRef
23.
go back to reference Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment clinical perspective. Circ Arrhythm Electrophysiol. 2013;6(2):327–33.CrossRef Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment clinical perspective. Circ Arrhythm Electrophysiol. 2013;6(2):327–33.CrossRef
25.
go back to reference Tilz RR, Makimoto H, Lin T, Rillig A, Metzner A, Mathew S, et al. In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force. Europace. 2014;16(9):1387–95.CrossRef Tilz RR, Makimoto H, Lin T, Rillig A, Metzner A, Mathew S, et al. In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force. Europace. 2014;16(9):1387–95.CrossRef
Metadata
Title
Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route
Authors
Ihab Elsokkari
John L. Sapp
Steve Doucette
Ratika Parkash
Christopher J. Gray
Martin J. Gardner
Ciorsti Macintyre
Amir M. AbdelWahab
Publication date
01-12-2018
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 3/2018
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-018-0396-1

Other articles of this Issue 3/2018

Journal of Interventional Cardiac Electrophysiology 3/2018 Go to the issue