Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Review

Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation

Authors: Shahani Noor, Emma H Wilson

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

For decades, chemokines and their receptors have received a great deal of attention for their multiple roles in controlling leukocyte functions during inflammation and immunity. The ability of chemokines to convey remarkably versatile but context-specific signals identifies them as powerful modulators of immune responses generated in response to diverse pathogenic or non-infectious insults. A number of recent studies have speculated that the C-C chemokine receptor type 7 (CCR7), plays important roles in immune-cell trafficking in various tissue compartments during inflammation and in immune surveillance. Using computational modeling and microfluidics-based approaches, recent studies have explored leukocyte migration behavior in response to CCR7 ligands in a complex chemokine environment existing with other coexisting chemokine fields. In this review, we summarize the current understanding of the effects of soluble versus immobilized ligands and of the downstream signaling pathways of CCR7 that control leukocyte motility, directionality, and speed. This review also integrates the current knowledge about the role of CCR7 in coordinating immune responses between secondary lymphoid organs and peripheral tissue microenvironments during primary or secondary antigen encounters. CCR7 seems to influence distinct immunological events during inflammatory responses in the central nervous system (CNS) including immune-cell entry and migration, and neuroglial interactions. The clinical and pathological outcome may vary depending on its contribution in the inflamed CNS microenvironment. Understanding these mechanisms has direct implications for therapeutic developments favoring more protective and efficient immune responses.
Literature
1.
go back to reference Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG: Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002, 416:94–99.PubMedCrossRef Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG: Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 2002, 416:94–99.PubMedCrossRef
2.
go back to reference Forster R, Davalos-Misslitz AC, Rot A: CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008, 8:362–371.PubMedCrossRef Forster R, Davalos-Misslitz AC, Rot A: CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008, 8:362–371.PubMedCrossRef
3.
go back to reference Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R: CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004, 21:279–288.PubMedCrossRef Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R: CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004, 21:279–288.PubMedCrossRef
4.
go back to reference Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401:708–712.PubMedCrossRef Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401:708–712.PubMedCrossRef
5.
go back to reference Szanya V, Ermann J, Taylor C, Holness C, Fathman CG: The subpopulation of CD4 + CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 2002, 169:2461–2465.PubMedCrossRef Szanya V, Ermann J, Taylor C, Holness C, Fathman CG: The subpopulation of CD4 + CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 2002, 169:2461–2465.PubMedCrossRef
6.
go back to reference Bajenoff M, Egen JG, Qi H, Huang AY, Castellino F, Germain RN: Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol 2007, 28:346–352.PubMedCrossRef Bajenoff M, Egen JG, Qi H, Huang AY, Castellino F, Germain RN: Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol 2007, 28:346–352.PubMedCrossRef
7.
go back to reference Okada T, Cyster JG: CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 2007, 178:2973–2978.PubMedCrossRef Okada T, Cyster JG: CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 2007, 178:2973–2978.PubMedCrossRef
8.
go back to reference Mueller SN, Germain RN: Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009, 9:618–629.PubMedPubMedCentral Mueller SN, Germain RN: Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009, 9:618–629.PubMedPubMedCentral
9.
go back to reference Turley SJ, Fletcher AL, Elpek KG: The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010, 10:813–825.PubMedCrossRef Turley SJ, Fletcher AL, Elpek KG: The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010, 10:813–825.PubMedCrossRef
10.
go back to reference Papatriantafyllou M: Trafficking: Tracking immune cells on the lymph node map. Nat Rev Immunol 2011, 11:644.PubMedCrossRef Papatriantafyllou M: Trafficking: Tracking immune cells on the lymph node map. Nat Rev Immunol 2011, 11:644.PubMedCrossRef
11.
go back to reference Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, Nakano H, Kakiuchi T, Lipp M, Hollander GA, Takahama Y: The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 2005, 105:31–39.PubMedCrossRef Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, Nakano H, Kakiuchi T, Lipp M, Hollander GA, Takahama Y: The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 2005, 105:31–39.PubMedCrossRef
12.
go back to reference Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie HT, Forster R: Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 2004, 200:481–491.PubMedPubMedCentralCrossRef Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie HT, Forster R: Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 2004, 200:481–491.PubMedPubMedCentralCrossRef
13.
go back to reference Davalos-Misslitz AC, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G, Forster R: Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol 2007, 37:613–622.PubMedCrossRef Davalos-Misslitz AC, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G, Forster R: Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol 2007, 37:613–622.PubMedCrossRef
14.
go back to reference Hintzen G, Ohl L, del Rio ML, Rodriguez-Barbosa JI, Pabst O, Kocks JR, Krege J, Hardtke S, Forster R: Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol 2006, 177:7346–7354.PubMedCrossRef Hintzen G, Ohl L, del Rio ML, Rodriguez-Barbosa JI, Pabst O, Kocks JR, Krege J, Hardtke S, Forster R: Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol 2006, 177:7346–7354.PubMedCrossRef
15.
go back to reference Menning A, Hopken UE, Siegmund K, Lipp M, Hamann A, Huehn J: Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 2007, 37:1575–1583.PubMedCrossRef Menning A, Hopken UE, Siegmund K, Lipp M, Hamann A, Huehn J: Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 2007, 37:1575–1583.PubMedCrossRef
16.
go back to reference Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A: CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 2007, 204:735–745.PubMedPubMedCentralCrossRef Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A: CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 2007, 204:735–745.PubMedPubMedCentralCrossRef
17.
go back to reference Kocks JR, Davalos-Misslitz AC, Hintzen G, Ohl L, Forster R: Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J Exp Med 2007, 204:723–734.PubMedPubMedCentralCrossRef Kocks JR, Davalos-Misslitz AC, Hintzen G, Ohl L, Forster R: Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J Exp Med 2007, 204:723–734.PubMedPubMedCentralCrossRef
18.
go back to reference Ploix C, Lo D, Carson MJ: A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J Immunol 2001, 167:6724–6730.PubMedCrossRef Ploix C, Lo D, Carson MJ: A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J Immunol 2001, 167:6724–6730.PubMedCrossRef
19.
go back to reference Davalos-Misslitz AC, Worbs T, Willenzon S, Bernhardt G, Forster R: Impaired responsiveness to T-cell receptor stimulation and defective negative selection of thymocytes in CCR7-deficient mice. Blood 2007, 110:4351–4359.PubMedCrossRef Davalos-Misslitz AC, Worbs T, Willenzon S, Bernhardt G, Forster R: Impaired responsiveness to T-cell receptor stimulation and defective negative selection of thymocytes in CCR7-deficient mice. Blood 2007, 110:4351–4359.PubMedCrossRef
20.
go back to reference Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y: CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 2004, 200:493–505.PubMedPubMedCentralCrossRef Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y: CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 2004, 200:493–505.PubMedPubMedCentralCrossRef
21.
go back to reference Petrie HT: Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 2003, 3:859–866.PubMedCrossRef Petrie HT: Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 2003, 3:859–866.PubMedCrossRef
22.
go back to reference Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R: CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 2007, 204:489–495.PubMedPubMedCentralCrossRef Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R: CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 2007, 204:489–495.PubMedPubMedCentralCrossRef
23.
go back to reference Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN: Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006, 25:989–1001.PubMedPubMedCentralCrossRef Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN: Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006, 25:989–1001.PubMedPubMedCentralCrossRef
24.
go back to reference Bromley SK, Thomas SY, Luster AD: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 2005, 6:895–901.PubMedCrossRef Bromley SK, Thomas SY, Luster AD: Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 2005, 6:895–901.PubMedCrossRef
25.
go back to reference Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG: Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002, 169:424–433.PubMedCrossRef Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG: Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002, 169:424–433.PubMedCrossRef
26.
go back to reference Wald O, Weiss ID, Galun E, Peled A: Chemokines in hepatitis C virus infection: pathogenesis, prognosis and therapeutics. Cytokine 2007, 39:50–62.PubMedCrossRef Wald O, Weiss ID, Galun E, Peled A: Chemokines in hepatitis C virus infection: pathogenesis, prognosis and therapeutics. Cytokine 2007, 39:50–62.PubMedCrossRef
27.
go back to reference Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB, Butcher EC: Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 2005, 6:889–894.PubMedPubMedCentralCrossRef Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB, Butcher EC: Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 2005, 6:889–894.PubMedPubMedCentralCrossRef
28.
go back to reference Hopken UE, Winter S, Achtman AH, Kruger K, Lipp M: CCR7 regulates lymphocyte egress and recirculation through body cavities. J Leukoc Biol 2010, 87:671–682.PubMedCrossRef Hopken UE, Winter S, Achtman AH, Kruger K, Lipp M: CCR7 regulates lymphocyte egress and recirculation through body cavities. J Leukoc Biol 2010, 87:671–682.PubMedCrossRef
29.
go back to reference Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ: Modulation of dendritic cell trafficking to and from the airways. J Immunol 2006, 176:3578–3584.PubMedCrossRef Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ: Modulation of dendritic cell trafficking to and from the airways. J Immunol 2006, 176:3578–3584.PubMedCrossRef
30.
go back to reference Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, et al.: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006, 176:803–810.PubMedCrossRef Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, et al.: CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006, 176:803–810.PubMedCrossRef
31.
go back to reference Yanagawa Y, Onoe K: CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood 2003, 101:4923–4929.PubMedCrossRef Yanagawa Y, Onoe K: CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood 2003, 101:4923–4929.PubMedCrossRef
32.
go back to reference Yanagawa Y, Onoe K: CCL19 induces rapid dendritic extension of murine dendritic cells. Blood 2002, 100:1948–1956.PubMedCrossRef Yanagawa Y, Onoe K: CCL19 induces rapid dendritic extension of murine dendritic cells. Blood 2002, 100:1948–1956.PubMedCrossRef
33.
go back to reference Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G, Puig-Kroger A, Garcia-Bordas J, Martin D, Longo N, Cuadrado A, Cabanas C, Corbi AL, et al.: Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 2004, 104:619–625.PubMedCrossRef Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G, Puig-Kroger A, Garcia-Bordas J, Martin D, Longo N, Cuadrado A, Cabanas C, Corbi AL, et al.: Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 2004, 104:619–625.PubMedCrossRef
34.
go back to reference Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA: Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 2007, 8:1255–1265.PubMedCrossRef Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA: Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 2007, 8:1255–1265.PubMedCrossRef
35.
go back to reference Scandella E, Fink K, Junt T, Senn BM, Lattmann E, Forster R, Hengartner H, Ludewig B: Dendritic cell-independent B cell activation during acute virus infection: a role for early CCR7-driven B-T helper cell collaboration. J Immunol 2007, 178:1468–1476.PubMedCrossRef Scandella E, Fink K, Junt T, Senn BM, Lattmann E, Forster R, Hengartner H, Ludewig B: Dendritic cell-independent B cell activation during acute virus infection: a role for early CCR7-driven B-T helper cell collaboration. J Immunol 2007, 178:1468–1476.PubMedCrossRef
36.
go back to reference Hardtke S, Ohl L, Forster R: Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 2005, 106:1924–1931.PubMedCrossRef Hardtke S, Ohl L, Forster R: Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 2005, 106:1924–1931.PubMedCrossRef
37.
go back to reference Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M: Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 2010, 32:703–713.PubMedCrossRef Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M: Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 2010, 32:703–713.PubMedCrossRef
38.
go back to reference Ricart BG, John B, Lee D, Hunter CA, Hammer DA: Dendritic Cells Distinguish Individual Chemokine Signals through CCR7 and CXCR4. J Immunol 2010, 186:53–61.PubMedCrossRef Ricart BG, John B, Lee D, Hunter CA, Hammer DA: Dendritic Cells Distinguish Individual Chemokine Signals through CCR7 and CXCR4. J Immunol 2010, 186:53–61.PubMedCrossRef
39.
go back to reference Nandagopal S, Wu D, Lin F: Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS One 2011, 6:e18183.PubMedPubMedCentralCrossRef Nandagopal S, Wu D, Lin F: Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS One 2011, 6:e18183.PubMedPubMedCentralCrossRef
40.
go back to reference Haessler U, Pisano M, Wu M, Swartz MA: Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 2011, 108:5614–5619.PubMedPubMedCentralCrossRef Haessler U, Pisano M, Wu M, Swartz MA: Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 2011, 108:5614–5619.PubMedPubMedCentralCrossRef
41.
go back to reference Stein JV, Rot A, Luo Y, Narasimhaswamy M, Nakano H, Gunn MD, Matsuzawa A, Quackenbush EJ, Dorf ME, von Andrian UH: The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med 2000, 191:61–76.PubMedPubMedCentralCrossRef Stein JV, Rot A, Luo Y, Narasimhaswamy M, Nakano H, Gunn MD, Matsuzawa A, Quackenbush EJ, Dorf ME, von Andrian UH: The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med 2000, 191:61–76.PubMedPubMedCentralCrossRef
42.
go back to reference Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, et al.: Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 2009, 30:300–311.PubMedPubMedCentralCrossRef Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, et al.: Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 2009, 30:300–311.PubMedPubMedCentralCrossRef
43.
go back to reference Noor S, Habashy AS, Nance JP, Clark RE, Nemati K, Carson MJ, Wilson EH: CCR7 dependent immunity during acute Toxoplasma gondii infection. Infect Immun 2010, 78:2257–2263.PubMedPubMedCentralCrossRef Noor S, Habashy AS, Nance JP, Clark RE, Nemati K, Carson MJ, Wilson EH: CCR7 dependent immunity during acute Toxoplasma gondii infection. Infect Immun 2010, 78:2257–2263.PubMedPubMedCentralCrossRef
44.
go back to reference Yang BG, Tanaka T, Jang MH, Bai Z, Hayasaka H, Miyasaka M: Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J Immunol 2007, 179:4376–4382.PubMedCrossRef Yang BG, Tanaka T, Jang MH, Bai Z, Hayasaka H, Miyasaka M: Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J Immunol 2007, 179:4376–4382.PubMedCrossRef
45.
go back to reference Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ: Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 2009, 106:9649–9654.PubMedPubMedCentralCrossRef Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ: Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 2009, 106:9649–9654.PubMedPubMedCentralCrossRef
46.
go back to reference DeFea KA: Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 2010, 23:621–629.PubMedCrossRef DeFea KA: Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 2010, 23:621–629.PubMedCrossRef
47.
go back to reference Otero C, Groettrup M, Legler DF: Opposite fate of endocytosed CCR7 and its ligands: recycling versus degradation. J Immunol 2006, 177:2314–2323.PubMedCrossRef Otero C, Groettrup M, Legler DF: Opposite fate of endocytosed CCR7 and its ligands: recycling versus degradation. J Immunol 2006, 177:2314–2323.PubMedCrossRef
48.
go back to reference Bardi G, Lipp M, Baggiolini M, Loetscher P: The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur J Immunol 2001, 31:3291–3297.PubMedCrossRef Bardi G, Lipp M, Baggiolini M, Loetscher P: The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur J Immunol 2001, 31:3291–3297.PubMedCrossRef
49.
go back to reference Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS: Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 2004, 279:23214–23222.PubMedCrossRef Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS: Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 2004, 279:23214–23222.PubMedCrossRef
50.
go back to reference Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H: Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 2002, 168:3221–3226.PubMedCrossRef Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H: Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 2002, 168:3221–3226.PubMedCrossRef
51.
go back to reference Van Weering HR, Jong AP, Haas AH, Biber KP, Boddeke HW: CCL21-induced calcium transients and proliferation in primary mouse astrocytes: CXCR3-dependent and independent responses. Brain Behav Immun 2009, 24:768–775.PubMedCrossRef Van Weering HR, Jong AP, Haas AH, Biber KP, Boddeke HW: CCL21-induced calcium transients and proliferation in primary mouse astrocytes: CXCR3-dependent and independent responses. Brain Behav Immun 2009, 24:768–775.PubMedCrossRef
52.
go back to reference Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O: Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 1998, 273:7118–7122.PubMedCrossRef Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O: Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 1998, 273:7118–7122.PubMedCrossRef
53.
go back to reference Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998, 95:258–263.PubMedPubMedCentralCrossRef Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998, 95:258–263.PubMedPubMedCentralCrossRef
54.
go back to reference Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE: Regulation of protein function by glycosaminoglycans–as exemplified by chemokines. Annu Rev Biochem 2005, 74:385–410.PubMedCrossRef Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE: Regulation of protein function by glycosaminoglycans–as exemplified by chemokines. Annu Rev Biochem 2005, 74:385–410.PubMedCrossRef
55.
go back to reference Riol-Blanco L, Sanchez-Sanchez N, Torres A, Tejedor A, Narumiya S, Corbi AL, Sanchez-Mateos P, Rodriguez-Fernandez JL: The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol 2005, 174:4070–4080.PubMedCrossRef Riol-Blanco L, Sanchez-Sanchez N, Torres A, Tejedor A, Narumiya S, Corbi AL, Sanchez-Mateos P, Rodriguez-Fernandez JL: The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol 2005, 174:4070–4080.PubMedCrossRef
56.
go back to reference Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL: The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 2006, 176:5153–5159.PubMedCrossRef Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL: The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 2006, 176:5153–5159.PubMedCrossRef
57.
go back to reference Lin F, Butcher EC: T cell chemotaxis in a simple microfluidic device. Lab Chip 2006, 6:1462–1469.PubMedCrossRef Lin F, Butcher EC: T cell chemotaxis in a simple microfluidic device. Lab Chip 2006, 6:1462–1469.PubMedCrossRef
58.
go back to reference Bromley SK, Mempel TR, Luster AD: Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008, 9:970–980.PubMedCrossRef Bromley SK, Mempel TR, Luster AD: Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008, 9:970–980.PubMedCrossRef
59.
go back to reference Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99:23–33.PubMedCrossRef Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99:23–33.PubMedCrossRef
60.
go back to reference Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245–252.PubMedCrossRef Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245–252.PubMedCrossRef
61.
go back to reference Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A: Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999, 29:1617–1625.PubMedCrossRef Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A: Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999, 29:1617–1625.PubMedCrossRef
62.
go back to reference Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K, Kremmer E, Sixt M, Hoffmeyer A, Pabst O, Forster R: Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 2011, 35:945–957.PubMedCrossRef Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K, Kremmer E, Sixt M, Hoffmeyer A, Pabst O, Forster R: Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 2011, 35:945–957.PubMedCrossRef
63.
go back to reference Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H: Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999, 189:451–460.PubMedPubMedCentralCrossRef Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H: Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999, 189:451–460.PubMedPubMedCentralCrossRef
64.
go back to reference Junt T, Scandella E, Forster R, Krebs P, Krautwald S, Lipp M, Hengartner H, Ludewig B: Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J Immunol 2004, 173:6684–6693.PubMedCrossRef Junt T, Scandella E, Forster R, Krebs P, Krautwald S, Lipp M, Hengartner H, Ludewig B: Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J Immunol 2004, 173:6684–6693.PubMedCrossRef
65.
go back to reference Kursar M, Hopken UE, Koch M, Kohler A, Lipp M, Kaufmann SH, Mittrucker HW: Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. J Exp Med 2005, 201:1447–1457.PubMedPubMedCentralCrossRef Kursar M, Hopken UE, Koch M, Kohler A, Lipp M, Kaufmann SH, Mittrucker HW: Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. J Exp Med 2005, 201:1447–1457.PubMedPubMedCentralCrossRef
66.
go back to reference Junt T, Nakano H, Dumrese T, Kakiuchi T, Odermatt B, Zinkernagel RM, Hengartner H, Ludewig B: Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J Immunol 2002, 168:6032–6040.PubMedCrossRef Junt T, Nakano H, Dumrese T, Kakiuchi T, Odermatt B, Zinkernagel RM, Hengartner H, Ludewig B: Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J Immunol 2002, 168:6032–6040.PubMedCrossRef
67.
go back to reference Ebert LM, Schaerli P, Moser B: Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 2005, 42:799–809.PubMedCrossRef Ebert LM, Schaerli P, Moser B: Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 2005, 42:799–809.PubMedCrossRef
68.
go back to reference Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC: CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001, 194:1541–1547.PubMedPubMedCentralCrossRef Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC: CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001, 194:1541–1547.PubMedPubMedCentralCrossRef
69.
go back to reference Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, Andrew DP, Targan SR: The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 2000, 165:5069–5076.PubMedCrossRef Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, Andrew DP, Targan SR: The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 2000, 165:5069–5076.PubMedCrossRef
70.
go back to reference Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S: Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 2006, 103:14098–14103.PubMedPubMedCentralCrossRef Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S: Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 2006, 103:14098–14103.PubMedPubMedCentralCrossRef
71.
go back to reference Tateyama M, Fujihara K, Misu T, Itoyama Y: CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19 nonnecrotic muscle fibers in inclusion body myositis. J Neurol Sci 2009, 279:47–52.PubMedCrossRef Tateyama M, Fujihara K, Misu T, Itoyama Y: CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19 nonnecrotic muscle fibers in inclusion body myositis. J Neurol Sci 2009, 279:47–52.PubMedCrossRef
72.
go back to reference Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH: Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 2007, 195:46–54.PubMedCrossRef Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH: Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 2007, 195:46–54.PubMedCrossRef
73.
go back to reference Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A, Forster R: Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 2011, 12:879–887.PubMedCrossRef Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A, Forster R: Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 2011, 12:879–887.PubMedCrossRef
75.
go back to reference Mrass P, Weninger W: Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol Rev 2006, 213:195–212.PubMedCrossRef Mrass P, Weninger W: Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol Rev 2006, 213:195–212.PubMedCrossRef
76.
78.
go back to reference Alt C, Laschinger M, Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 2002, 32:2133–2144.PubMedCrossRef Alt C, Laschinger M, Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 2002, 32:2133–2144.PubMedCrossRef
79.
go back to reference Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M, Farina C, Derfuss T, Junker A, Arzberger T, et al.: CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 2007, 190:72–79.PubMedCrossRef Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M, Farina C, Derfuss T, Junker A, Arzberger T, et al.: CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 2007, 190:72–79.PubMedCrossRef
80.
go back to reference Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ: CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 2010, 25:883–896.PubMedPubMedCentralCrossRef Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ: CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 2010, 25:883–896.PubMedPubMedCentralCrossRef
81.
go back to reference Engelhardt B: Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 2006, 113:477–485.PubMedCrossRef Engelhardt B: Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 2006, 113:477–485.PubMedCrossRef
83.
go back to reference Fiuza JA, Fujiwara RT, Gomes JA, Rocha MO, Chaves AT, de Araujo FF, Fares RC, Teixeira-Carvalho A, Martins-Filho OA, Cancado GG, Correa-Oliveira R: Profile of central and effector memory T cells in the progression of chronic human chagas disease. PLoS Negl Trop Dis 2009, 3:e512.PubMedPubMedCentralCrossRef Fiuza JA, Fujiwara RT, Gomes JA, Rocha MO, Chaves AT, de Araujo FF, Fares RC, Teixeira-Carvalho A, Martins-Filho OA, Cancado GG, Correa-Oliveira R: Profile of central and effector memory T cells in the progression of chronic human chagas disease. PLoS Negl Trop Dis 2009, 3:e512.PubMedPubMedCentralCrossRef
84.
go back to reference de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW: Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 2011, 80:43–50.PubMedCrossRef de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW: Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 2011, 80:43–50.PubMedCrossRef
85.
go back to reference Kivisakk P, Tucky B, Wei T, Campbell JJ, Ransohoff RM: Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy. BMC Immunol 2006, 7:14.PubMedPubMedCentralCrossRef Kivisakk P, Tucky B, Wei T, Campbell JJ, Ransohoff RM: Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy. BMC Immunol 2006, 7:14.PubMedPubMedCentralCrossRef
86.
go back to reference Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H, Ransohoff RM: Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 2004, 55:627–638.PubMedCrossRef Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H, Ransohoff RM: Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 2004, 55:627–638.PubMedCrossRef
87.
go back to reference Doerck S, Gobel K, Weise G, Schneider-Hohendorf T, Reinhardt M, Hauff P, Schwab N, Linker R, Maurer M, Meuth SG, Wiendl H: Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS One 2010, 5:e15478.PubMedPubMedCentralCrossRef Doerck S, Gobel K, Weise G, Schneider-Hohendorf T, Reinhardt M, Hauff P, Schwab N, Linker R, Maurer M, Meuth SG, Wiendl H: Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS One 2010, 5:e15478.PubMedPubMedCentralCrossRef
88.
go back to reference Asensio VC, Campbell IL: Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 1999, 22:504–512.PubMedCrossRef Asensio VC, Campbell IL: Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 1999, 22:504–512.PubMedCrossRef
89.
go back to reference Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003, 13:38–51.PubMedCrossRef Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003, 13:38–51.PubMedCrossRef
90.
go back to reference Meinl E, Krumbholz M, Hohlfeld R: B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 2006, 59:880–892.PubMedCrossRef Meinl E, Krumbholz M, Hohlfeld R: B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 2006, 59:880–892.PubMedCrossRef
91.
go back to reference Antel J, Bar-Or A: Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment. J Neuroimmunol 2006, 180:3–8.PubMedCrossRef Antel J, Bar-Or A: Roles of immunoglobulins and B cells in multiple sclerosis: from pathogenesis to treatment. J Neuroimmunol 2006, 180:3–8.PubMedCrossRef
92.
go back to reference Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T: CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol 2009, 183:2513–2521.PubMedCrossRef Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T: CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol 2009, 183:2513–2521.PubMedCrossRef
93.
go back to reference Takamura K, Fukuyama S, Nagatake T, Kim DY, Kawamura A, Kawauchi H, Kiyono H: Regulatory role of lymphoid chemokine CCL19 and CCL21 in the control of allergic rhinitis. J Immunol 2007, 179:5897–5906.PubMedCrossRef Takamura K, Fukuyama S, Nagatake T, Kim DY, Kawamura A, Kawauchi H, Kiyono H: Regulatory role of lymphoid chemokine CCL19 and CCL21 in the control of allergic rhinitis. J Immunol 2007, 179:5897–5906.PubMedCrossRef
94.
go back to reference Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S, Viola A: T cell costimulation by chemokine receptors. Nat Immunol 2005, 6:465–471.PubMedCrossRef Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S, Viola A: T cell costimulation by chemokine receptors. Nat Immunol 2005, 6:465–471.PubMedCrossRef
95.
go back to reference Fan L, Reilly CR, Luo Y, Dorf ME, Lo D: Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 2000, 164:3955–3959.PubMedCrossRef Fan L, Reilly CR, Luo Y, Dorf ME, Lo D: Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 2000, 164:3955–3959.PubMedCrossRef
96.
go back to reference Aloisi F, Pujol-Borrell R: Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006, 6:205–217.PubMedCrossRef Aloisi F, Pujol-Borrell R: Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006, 6:205–217.PubMedCrossRef
97.
go back to reference Chen SC, Leach MW, Chen Y, Cai XY, Sullivan L, Wiekowski M, Dovey-Hartman BJ, Zlotnik A, Lira SA: Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 2002, 168:1009–1017.PubMedCrossRef Chen SC, Leach MW, Chen Y, Cai XY, Sullivan L, Wiekowski M, Dovey-Hartman BJ, Zlotnik A, Lira SA: Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 2002, 168:1009–1017.PubMedCrossRef
98.
go back to reference Gomez-Nicola D, Pallas-Bazarra N, Valle-Argos B, Nieto-Sampedro M: CCR7 is expressed in astrocytes and upregulated after an inflammatory injury. J Neuroimmunol 2010, 227:87–92.PubMedCrossRef Gomez-Nicola D, Pallas-Bazarra N, Valle-Argos B, Nieto-Sampedro M: CCR7 is expressed in astrocytes and upregulated after an inflammatory injury. J Neuroimmunol 2010, 227:87–92.PubMedCrossRef
99.
go back to reference Dijkstra IM, de Haas AH, Brouwer N, Boddeke HW, Biber K: Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo. Glia 2006, 54:861–872.PubMedCrossRef Dijkstra IM, de Haas AH, Brouwer N, Boddeke HW, Biber K: Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo. Glia 2006, 54:861–872.PubMedCrossRef
100.
go back to reference Eo SK, Kumaraguru U, Rouse BT: Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol 2001, 167:3592–3599.PubMedCrossRef Eo SK, Kumaraguru U, Rouse BT: Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol 2001, 167:3592–3599.PubMedCrossRef
101.
go back to reference de Jong EK, Dijkstra IM, Hensens M, Brouwer N, van Amerongen M, Liem RS, Boddeke HW, Biber K: Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 2005, 25:7548–7557.PubMedCrossRef de Jong EK, Dijkstra IM, Hensens M, Brouwer N, van Amerongen M, Liem RS, Boddeke HW, Biber K: Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 2005, 25:7548–7557.PubMedCrossRef
102.
go back to reference Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW: Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia 2001, 34:121–133.PubMedCrossRef Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW: Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia 2001, 34:121–133.PubMedCrossRef
104.
go back to reference Dijkstra IM, Hulshof S, van der Valk P, Boddeke HW, Biber K: Cutting edge: activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 2004, 172:2744–2747.PubMedCrossRef Dijkstra IM, Hulshof S, van der Valk P, Boddeke HW, Biber K: Cutting edge: activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 2004, 172:2744–2747.PubMedCrossRef
105.
go back to reference Zhao P, Waxman SG, Hains BC: Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27:8893–8902.PubMedCrossRef Zhao P, Waxman SG, Hains BC: Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27:8893–8902.PubMedCrossRef
106.
go back to reference Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K: Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 2011, 30:1864–1873.PubMedPubMedCentralCrossRef Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K: Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 2011, 30:1864–1873.PubMedPubMedCentralCrossRef
Metadata
Title
Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation
Authors
Shahani Noor
Emma H Wilson
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-77

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue