Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus

Key Points

  • Directional cell migration into and within the post-natal thymus is intricately linked to the T-cell differentiation process.

  • Directional cell migration can be controlled in numerous ways, including: restricting the distribution of ligands for cell adhesion and traction, activating or inactivating receptors for cell adhesion and traction that are expressed by the migrating cells, and differentially localizing the sources of chemoattractant and/or repulsive signals.

  • Additional specificity is provided by expressing unique combinations of adhesion or chemoattractant receptors by progenitors at different stages of development.

Abstract

Similar to all haematopoietic lineages, T cells must be replenished throughout life — a process that is the main function of the thymus. New progenitors are recruited to leave the bloodstream and enter the thymus, then to migrate in a defined pattern within the thymus during differentiation, and finally to return to the blood after maturation. Thereby, directional migration is intrinsically linked to all stages of T-cell differentiation. This review focuses on what is known and what is unknown about the signals that support this migration process in the mouse model of post-natal thymocyte differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell migration during post-natal T-cell differentiation.
Figure 2: Control of cell movement and location by regionalized distribution of adhesive matrix and/or directional signals.
Figure 3: Adhesive interactions between lymphoid progenitors and stromal cells, and their role in post-natal T-cell differentiation in the thymus.
Figure 4: Multiple mechanisms to regulate medullary localization of positively selected cells.

Similar content being viewed by others

References

  1. Osterfield, M., Kirschner, M. W. & Flanagan, J. G. Graded positional information: interpretation for both fate and guidance. Cell 113, 425–428 (2003).

    Article  CAS  Google Scholar 

  2. Watt, F. M. Stem cell fate and patterning in mammalian epidermis. Curr. Opin. Genet. Dev. 11, 410–417 (2001).

    Article  CAS  Google Scholar 

  3. Marshman, E., Booth, C. & Potten, C. S. The intestinal epithelial stem cell. Bioessays 24, 91–98 (2002).

    Article  Google Scholar 

  4. Jegou, B. The Sertoli-germ cell communication network in mammals. Int. Rev. Cytol. 147, 25–96 (1993).

    Article  CAS  Google Scholar 

  5. Nilsson, S. K. et al. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101, 856–862 (2003).

    Article  CAS  Google Scholar 

  6. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  7. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002). This manuscript indicates that the earliest lymphoid progenitor found in bone marrow seems to be marked by transcription from the recombinase-activating gene 1 ( RAG1 ) locus.

    Article  CAS  Google Scholar 

  8. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol. 4, 168–174 (2003). This work describes what seems to be the earliest T-cell-lineage progenitor found in the thymus, and shows that it differs from the canonical common lymphoid progenitor.

    Article  CAS  Google Scholar 

  9. Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 190, 1617–1626 (1999). This paper shows that the first requirement for Notch1 in the thymus seems to include repression of the default B-cell-lineage fate and/or to specify T-cell-lineage differentiation.

    Article  CAS  Google Scholar 

  10. Ardavin, C., Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  Google Scholar 

  11. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  12. Moore, T. A. & Zlotnik, A. T-cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  13. Laudanna, C., Kim, J. Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    Article  CAS  Google Scholar 

  14. Ruiz, P., Wiles, M. V. & Imhof, B. A. α6 integrins participate in pro-T cell homing to the thymus. Eur. J. Immunol. 25, 2034–2041 (1995).

    Article  CAS  Google Scholar 

  15. Wu, L., Kincade, P. W. & Shortman, K. The CD44 expressed on the earliest intrathymic precursor population functions as a thymus homing molecule but does not bind to hyaluronate. Immunol. Lett. 38, 69–75 (1993).

    Article  CAS  Google Scholar 

  16. Champion, S., Imhof, B. A., Savagner, P. & Thiery, J. P. The embryonic thymus produces chemotactic peptides involved in the homing of hemopoietic precursors. Cell 44, 781–790 (1986).

    Article  CAS  Google Scholar 

  17. Bleul, C. C. & Boehm, T. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol. 30, 3371–3379 (2000).

    Article  CAS  Google Scholar 

  18. Wilkinson, B., Owen, J. J. & Jenkinson, E. J. Factors regulating stem cell recruitment to the fetal thymus J. Immunol. 162, 3873–3881 (1999).

    CAS  PubMed  Google Scholar 

  19. Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

    Article  CAS  Google Scholar 

  20. Suniara, R. K., Jenkinson, E. J. & Owen, J. J. Studies on the phenotype of migrant thymic stem cells. Eur. J. Immunol. 29, 75–80 (1999).

    Article  CAS  Google Scholar 

  21. Kawakami, N. et al. Roles of integrins and CD44 on the adhesion and migration of fetal liver cells to the fetal thymus. J. Immunol. 163, 3211–3216 (1999).

    CAS  PubMed  Google Scholar 

  22. Kincade, P. W. et al. Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunol. Rev. 187, 116–125 (2002).

    Article  Google Scholar 

  23. Owen, J. J. & Ritter, M. A. Tissue interaction in the development of thymus lymphocytes. J. Exp. Med. 129, 431–442 (1969).

    Article  CAS  Google Scholar 

  24. Moore, M. A. & Owen, J. J. Experimental studies on the development of the thymus. J. Exp. Med. 126, 715–726 (1967).

    Article  CAS  Google Scholar 

  25. Le, D. N. M. & Jotereau, F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40 (1975).

    Article  Google Scholar 

  26. Rossiter, H., Alon, R. & Kupper, T. S. Selectins, T-cell rolling and inflammation. Mol. Med. Today 3, 214–222 (1997).

    Article  CAS  Google Scholar 

  27. Ushiki, T. & Takeda, M. Three-dimensional ultrastructure of the perivascular space in the rat thymus. Arch. Histol. Cytol. 60, 89–99 (1997).

    Article  CAS  Google Scholar 

  28. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  29. Lepique, A. P., Palencia, S., Irjala, H. & Petrie, H. T. Characterization of vascular adhesion molecules that may facilitate progenitor homing in the post–natal mouse thymus. Clin. Dev. Immunol. 10, 27–33 (2003).

    Article  CAS  Google Scholar 

  30. Dunon, D. et al. Ontogeny of the immune system: γδ and αβ T cells migrate from thymus to the periphery in alternating waves. J. Exp. Med. 186, 977–988 (1997).

    Article  CAS  Google Scholar 

  31. Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  Google Scholar 

  32. Foss, D. L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  Google Scholar 

  33. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990). This study shows that recruitment of new progenitors from the blood to the post-natal thymus is a regulated periodic process, rather than occurring constitutively.

    Article  CAS  Google Scholar 

  34. Savino, W., Villa-Verde, D. M. & Lannes-Vieira, J. Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol. Today 14, 158–161 (1993).

    Article  CAS  Google Scholar 

  35. Kishimoto, H. et al. Differing roles for B7 and intercellular adhesion molecule-1 in negative selection of thymocytes. J. Exp. Med. 184, 531–537 (1996).

    Article  CAS  Google Scholar 

  36. Sawada, M. et al. Expression of VLA-4 on thymocytes. Maturation stage-associated transition and its correlation with their capacity to adhere to thymic stromal cells. J. Immunol. 149, 3517–3524 (1992).

    CAS  PubMed  Google Scholar 

  37. Crisa, L. et al. Cell adhesion and migration are regulated at distinct stages of thymic T cell development: the roles of fibronectin, VLA4, and VLA5. J. Exp. Med. 184, 215–228 (1996).

    Article  CAS  Google Scholar 

  38. Wadsworth, S., Halvorson, M. J. & Coligan, J. E. Developmentally regulated expression of the β4 integrin on immature mouse thymocytes. J. Immunol. 149, 421–428 (1992).

    CAS  PubMed  Google Scholar 

  39. Prockop, S. E. et al. Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J. Immunol. 169, 4354–4361 (2002).

    Article  CAS  Google Scholar 

  40. Lannes-Vieira, J., Dardenne, M. & Savino, W. Extracellular matrix components of the mouse thymus micro-environment: ontogenetic studies and modulation by glucocorticoid hormones. J. Histochem. Cytochem. 39, 1539–1546 (1991).

    Article  CAS  Google Scholar 

  41. Kim, M. G. et al. Epithelial cell-specific laminin 5 is required for survival of early thymocytes. J. Immunol. 165, 192–201 (2000).

    Article  CAS  Google Scholar 

  42. Harman, B. C., Jenkinson, E. J. & Anderson, G. Microenvironmental regulation of Notch signalling in T cell development. Semin. Immunol. 15, 91–97 (2003).

    Article  CAS  Google Scholar 

  43. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002). This work shows that the Notch ligand delta-like 1 is sufficient to specify the differentiation of T-cell-lineage progenitors in stromal cell cultures in vitro.

    Article  CAS  Google Scholar 

  44. Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., Dardenne, M. & Cotta-de-Almeida, V. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol. 23, 305–313 (2002).

    Article  CAS  Google Scholar 

  45. Norment, A. M. & Bevan, M. J. Role of chemokines in thymocyte development. Semin. Immunol. 12, 445–455 (2000).

    Article  CAS  Google Scholar 

  46. Pelletier, A. J. et al. Presentation of chemokine SDF-1α by fibronectin mediates directed migration of T cells. Blood 96, 2682–2690 (2000). This manuscript shows that directional T-cell migration does not require a gradient of chemokines, but rather an initial polarizing event together with persistence of the chemokine signal.

    CAS  PubMed  Google Scholar 

  47. Youn, B. S. et al. Role of the CC chemokine receptor 9/TECK interaction in apoptosis. Apoptosis 7, 271–276 (2002).

    Article  CAS  Google Scholar 

  48. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  Google Scholar 

  49. Yanagawa, Y., Iwabuchi, K. & Onoe, K. Enhancement of stromal cell-derived factor-1α-induced chemotaxis for CD4/8 double-positive thymocytes by fibronectin and laminin in mice. Immunology 104, 43–49 (2001).

    Article  CAS  Google Scholar 

  50. Uehara, S., Song, K., Farber, J. M. & Love, P. E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3highCD69+ thymocytes and γδTCR+ thymocytes preferentially respond to CCL25. J. Immunol. 168, 134–142 (2002).

    Article  CAS  Google Scholar 

  51. Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  52. Norment, A. M., Bogatzki, L. Y., Gantner, B. N. & Bevan, M. J. Murine CCR9, a chemokine receptor for thymus-expressed chemokine that is upregulated following pre-TCR signaling. J. Immunol. 164, 639–648 (2000).

    Article  CAS  Google Scholar 

  53. Wurbel, M. A. et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur. J. Immunol. 30, 262–271 (2000).

    Article  CAS  Google Scholar 

  54. Vicari, A. P. et al. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 7, 291–301 (1997).

    Article  CAS  Google Scholar 

  55. Campbell, J. J., Pan, J. & Butcher, E. C. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol. 163, 2353–2357 (1999). This work shows several stage-specific distinctions in the responsiveness of developing thymocytes to various chemokines.

    CAS  PubMed  Google Scholar 

  56. Suzuki, G. et al. Pertussis toxin-sensitive signal controls the trafficking of thymocytes across the corticomedullary junction in the thymus. J. Immunol. 162, 5981–5985 (1999). This work indicates that movement from the cortex to the medulla is an active event requiring G protein-coupled signal transduction.

    CAS  PubMed  Google Scholar 

  57. Chantry, D. et al. Macrophage-derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3+, CD4+, CD8low thymocytes. Blood 94, 1890–1898 (1999).

    CAS  PubMed  Google Scholar 

  58. Kremer, L. et al. The transient expression of CC chemokine receptor 8 in thymus identifies a thymocyte subset committed to become CD4+ single-positive T cells. J. Immunol. 166, 218–225 (2001).

    Article  CAS  Google Scholar 

  59. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  Google Scholar 

  60. Lu, T. T. & Cyster, J. G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  Google Scholar 

  61. Suzuki, G. et al. Loss of SDF-1 receptor expression during positive selection in the thymus. Int. Immunol. 10, 1049–1056 (1998).

    Article  CAS  Google Scholar 

  62. Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16, 205–218 (2002).

    Article  CAS  Google Scholar 

  63. Shi, G. X., Harrison, K., Wilson, G. L., Moratz, C. & Kehrl, J. H. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol. 169, 2507–2515 (2002).

    Article  CAS  Google Scholar 

  64. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  65. Vergara-Silva, A., Schaefer, K. L. & Berg, L. J. Compartmentalized Eph receptor and ephrin expression in the thymus. Gene Expr. Patterns 2, 261–265 (2002). This work, although largely descriptive, indicates a potential role for canonical mediators of cell repulsion (ephrins) in directing cell location in the thymus.

    Article  CAS  Google Scholar 

  66. Toro, I. & Olah, I. Penetration of thymocytes into the blood circulation. J. Ultrastruct. Res. 17, 439–451 (1967).

    Article  CAS  Google Scholar 

  67. Bhalla, D. K. & Karnovsky, M. J. Surface morphology of mouse and rat thymic lymphocytes: an in situ scanning electron microscopic study. Anat. Rec. 191, 203–220 (1978).

    Article  CAS  Google Scholar 

  68. Miyasaka, M., Pabst, R., Dudler, L., Cooper, M. & Yamaguchi, K. Characterization of lymphatic and venous emigrants from the thymus. Thymus 16, 29–43 (1990).

    CAS  PubMed  Google Scholar 

  69. Sainte-Marie, G. & Leblond, C. P. Elaboration of a model for the formation of lymphocytes in the thymic cortex of young adult rats. Blood 26, 765–783 (1965).

    CAS  PubMed  Google Scholar 

  70. Chaffin, K. E. & Perlmutter, R. M. A pertussis toxin-sensitive process controls thymocyte emigration. Eur. J. Immunol. 21, 2565–2573 (1991). This paper was one of the first to show that G protein-coupled signals are required for T-cell differentiation in the thymus, and indicates that this process is required for the export of newly generated T cells as well.

    Article  CAS  Google Scholar 

  71. Poznansky, M. C. et al. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J. Clin. Invest. 109, 1101–1110 (2002).

    Article  CAS  Google Scholar 

  72. Zaitseva, M. et al. Stromal-derived factor 1 expression in the human thymus. J. Immunol. 168, 2609–2617 (2002).

    Article  CAS  Google Scholar 

  73. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  Google Scholar 

  74. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    Article  CAS  Google Scholar 

  75. Chensue, S. W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere thanks to Y. Takahama, P. Love and J. Cyster for helpful discussions before submission of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CCL19

CCL22

CCL25

CCR4

CCR9

CD25

CD44

CXCL12

CXCR4

delta-like 1

ICAM1

MADCAM1

VCAM1

FURTHER INFORMATION

Howard Petrie's websites (current)

Howard Petrie's websites (future)

Glossary

LINEAGE POTENTIAL

The lineages that a given progenitor can differentiate into, given the appropriate conditions. This does not necessarily indicate a biologically relevant outcome — that is, the fact that a given progenitor can be induced to generate cells of a specific lineage does not mean that it normally generates cells of that lineage.

LINEAGE COMMITMENT

Irreversible differentiation into a single lineage, concurrent with loss of other lineage potential.

HIGH ENDOTHELIAL VENULES

Specialized blood vessels with columnar endothelium that facilitate constitutive exchange of lymphocytes between the circulation and secondary lymphoid organs.

POSITIVE SELECTION

The maturation of immature CD4+CD8+ precursor thymocytes induced by T-cell receptor (TCR) signals that result from binding to self-peptide–MHC ligands on thymic epithelial cells. This process selects thymocytes that express TCRs that can interact with self-MHC molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, H. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 3, 859–866 (2003). https://doi.org/10.1038/nri1223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing