Skip to main content
Top
Published in: Acta Neuropathologica 6/2017

01-12-2017 | Original Paper

RNAi screen identifies essential regulators of human brain metastasis-initiating cells

Authors: Mohini Singh, Chitra Venugopal, Tomas Tokar, Kevin R. Brown, Nicole McFarlane, David Bakhshinyan, Thusyanth Vijayakumar, Branavan Manoranjan, Sujeivan Mahendram, Parvez Vora, Maleeha Qazi, Manvir Dhillon, Amy Tong, Kathrin Durrer, Naresh Murty, Robin Hallet, John A. Hassell, David R. Kaplan, Jean-Claude Cutz, Igor Jurisica, Jason Moffat, Sheila K. Singh

Published in: Acta Neuropathologica | Issue 6/2017

Login to get access

Abstract

Brain metastases (BM) are the most common brain tumor in adults and are a leading cause of cancer mortality. Metastatic lesions contain subclones derived from their primary lesion, yet their functional characterization is limited by a paucity of preclinical models accurately recapitulating the metastatic cascade, emphasizing the need for a novel approach to BM and their treatment. We identified a unique subset of stem-like cells from primary human patient brain metastases, termed brain metastasis-initiating cells (BMICs). We now establish a BMIC patient-derived xenotransplantation (PDXT) model as an investigative tool to comprehensively interrogate human BM. Using both in vitro and in vivo RNA interference screens of these BMIC models, we identified SPOCK1 and TWIST2 as essential BMIC regulators. SPOCK1 in particular is a novel regulator of BMIC self-renewal, modulating tumor initiation and metastasis from the lung to the brain. A prospective cohort of primary lung cancer specimens showed that SPOCK1 was overexpressed only in patients who ultimately developed BM. Protein–protein interaction network mapping between SPOCK1 and TWIST2 identified novel pathway interactors with significant prognostic value in lung cancer patients. Of these genes, INHBA, a TGF-β ligand found mutated in lung adenocarcinoma, showed reduced expression in BMICs with knockdown of SPOCK1. In conclusion, we have developed a useful preclinical model of BM, which has served to identify novel putative BMIC regulators, presenting potential therapeutic targets that block the metastatic process, and transform a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Appendix
Available only for authorised users
Literature
8.
go back to reference Cousin E, Hannequin D, Ricard S, Mace S, Genin E, Chansac C et al (2003) A risk for early-onset Alzheimer’s disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neurosci Lett 342:5–8CrossRefPubMed Cousin E, Hannequin D, Ricard S, Mace S, Genin E, Chansac C et al (2003) A risk for early-onset Alzheimer’s disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neurosci Lett 342:5–8CrossRefPubMed
12.
go back to reference Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z et al (2011) Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 30:4707–4720. doi:10.1038/onc.2011.181 CrossRefPubMed Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z et al (2011) Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 30:4707–4720. doi:10.​1038/​onc.​2011.​181 CrossRefPubMed
13.
14.
go back to reference Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751CrossRefPubMed Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751CrossRefPubMed
16.
18.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMed
19.
go back to reference Ketela T, Heisler LE, Brown KR, Ammar R, Kasimer D, Surendra A et al (2011) A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genom 12:213. doi:10.1186/1471-2164-12-213 CrossRef Ketela T, Heisler LE, Brown KR, Ammar R, Kasimer D, Surendra A et al (2011) A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genom 12:213. doi:10.​1186/​1471-2164-12-213 CrossRef
20.
go back to reference Kittanakom S, Arnoldo A, Brown KR, Wallace I, Kunavisarut T, Torti D et al (2013) Miniature short hairpin RNA screens to characterize antiproliferative drugs. G3 (Bethesda) 3:1375–1387. doi:10.1534/g3.113.006437 CrossRef Kittanakom S, Arnoldo A, Brown KR, Wallace I, Kunavisarut T, Torti D et al (2013) Miniature short hairpin RNA screens to characterize antiproliferative drugs. G3 (Bethesda) 3:1375–1387. doi:10.​1534/​g3.​113.​006437 CrossRef
22.
go back to reference Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541. doi:10.1093/nar/gkv1115 CrossRefPubMed Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541. doi:10.​1093/​nar/​gkv1115 CrossRefPubMed
24.
go back to reference Lee YS, Lee HH, Park J, Yoo EJ, Glackin CA, Choi YI et al (2003) Twist2, a novel ADD1/SREBP1c interacting protein, represses the transcriptional activity of ADD1/SREBP1c. Nucleic Acids Res 31:7165–7174CrossRefPubMedPubMedCentral Lee YS, Lee HH, Park J, Yoo EJ, Glackin CA, Choi YI et al (2003) Twist2, a novel ADD1/SREBP1c interacting protein, represses the transcriptional activity of ADD1/SREBP1c. Nucleic Acids Res 31:7165–7174CrossRefPubMedPubMedCentral
29.
32.
go back to reference Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A et al (2014) An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov 4:304–317. doi:10.1158/2159-8290.CD-13-0287 CrossRefPubMed Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A et al (2014) An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov 4:304–317. doi:10.​1158/​2159-8290.​CD-13-0287 CrossRefPubMed
34.
go back to reference Nolte SM, Venugopal C, McFarlane N, Morozova O, Hallett RM, O’Farrell E et al (2013) A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 105:551–562. doi:10.1093/jnci/djt022 CrossRefPubMed Nolte SM, Venugopal C, McFarlane N, Morozova O, Hallett RM, O’Farrell E et al (2013) A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 105:551–562. doi:10.​1093/​jnci/​djt022 CrossRefPubMed
35.
41.
go back to reference Seder CW, Hartojo W, Lin L, Silvers AL, Wang Z, Thomas DG et al (2009) Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia 11:388–396CrossRefPubMedPubMedCentral Seder CW, Hartojo W, Lin L, Silvers AL, Wang Z, Thomas DG et al (2009) Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia 11:388–396CrossRefPubMedPubMedCentral
45.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Can Res 63:5821–5828 Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Can Res 63:5821–5828
49.
51.
go back to reference Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X (2008) Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55:11–21CrossRefPubMed Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X (2008) Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55:11–21CrossRefPubMed
54.
go back to reference Venugopal C, McFarlane NM, Nolte S, Manoranjan B, Singh SK (2012) Processing of primary brain tumor tissue for stem cell assays and flow sorting. J Vis Exp JoVE. doi:10.3791/4111 PubMed Venugopal C, McFarlane NM, Nolte S, Manoranjan B, Singh SK (2012) Processing of primary brain tumor tissue for stem cell assays and flow sorting. J Vis Exp JoVE. doi:10.​3791/​4111 PubMed
55.
go back to reference Waghorne C, Thomas M, Lagarde A, Kerbel RS, Breitman ML (1988) Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Can Res 48:6109–6114 Waghorne C, Thomas M, Lagarde A, Kerbel RS, Breitman ML (1988) Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Can Res 48:6109–6114
56.
go back to reference Wolf J, Muller-Decker K, Flechtenmacher C, Zhang F, Shahmoradgoli M, Mills GB et al (2014) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33:4273–4278. doi:10.1038/onc.2013.515 CrossRefPubMed Wolf J, Muller-Decker K, Flechtenmacher C, Zhang F, Shahmoradgoli M, Mills GB et al (2014) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33:4273–4278. doi:10.​1038/​onc.​2013.​515 CrossRefPubMed
57.
go back to reference Yang C, Fischer-Keso R, Schlechter T, Strobel P, Marx A, Hofmann I (2015) Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol. doi:10.1007/s13277-015-3628-3 Yang C, Fischer-Keso R, Schlechter T, Strobel P, Marx A, Hofmann I (2015) Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol. doi:10.​1007/​s13277-015-3628-3
58.
go back to reference Yu F, Li G, Gao J, Sun Y, Liu P, Gao H et al (2016) SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and Temozolomide resistance. Cell Prolif. doi:10.1111/cpr.12241 Yu F, Li G, Gao J, Sun Y, Liu P, Gao H et al (2016) SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and Temozolomide resistance. Cell Prolif. doi:10.​1111/​cpr.​12241
Metadata
Title
RNAi screen identifies essential regulators of human brain metastasis-initiating cells
Authors
Mohini Singh
Chitra Venugopal
Tomas Tokar
Kevin R. Brown
Nicole McFarlane
David Bakhshinyan
Thusyanth Vijayakumar
Branavan Manoranjan
Sujeivan Mahendram
Parvez Vora
Maleeha Qazi
Manvir Dhillon
Amy Tong
Kathrin Durrer
Naresh Murty
Robin Hallet
John A. Hassell
David R. Kaplan
Jean-Claude Cutz
Igor Jurisica
Jason Moffat
Sheila K. Singh
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 6/2017
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-017-1757-z

Other articles of this Issue 6/2017

Acta Neuropathologica 6/2017 Go to the issue