Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines

Authors: Rashmi Narendrula, Kyle Mispel-Beyer, Baoqing Guo, Amadeo M. Parissenti, Laura B. Pritzker, Ken Pritzker, Twinkle Masilamani, Xiaohui Wang, Carita Lannér

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced “RNA disruption” is, the extent to which it is associated with drug response or what the underlying mechanisms are.

Methods

Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor.

Results

All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3’-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption.

Conclusions

Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is associated with drug response. Although present, the link between apoptosis and RNA disruption is not completely understood. Evaluation of RNA disruption is thus proposed as a novel and effective biomarker to assess response to chemotherapy drugs in vitro and in vivo.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lebreton A, Tomecki R, Dziembowski A, Seraphin B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature. 2008;456:993–6.CrossRefPubMed Lebreton A, Tomecki R, Dziembowski A, Seraphin B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature. 2008;456:993–6.CrossRefPubMed
3.
go back to reference LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell. 2006;24:619–26.CrossRefPubMed LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell. 2006;24:619–26.CrossRefPubMed
4.
go back to reference Fujii K, Kitabatake M, Sakata T, Ohno M. 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J. 2012;31:2579–89.PubMedCentralCrossRefPubMed Fujii K, Kitabatake M, Sakata T, Ohno M. 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J. 2012;31:2579–89.PubMedCentralCrossRefPubMed
7.
go back to reference Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA. 2006;12:508–21.PubMedCentralCrossRefPubMed Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA. 2006;12:508–21.PubMedCentralCrossRefPubMed
8.
go back to reference Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell. 2009;34:440–50.PubMedCentralCrossRefPubMed Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell. 2009;34:440–50.PubMedCentralCrossRefPubMed
9.
go back to reference Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008;10:602–10.CrossRefPubMed Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008;10:602–10.CrossRefPubMed
10.
go back to reference Guchelaar HJ, Vermes A, Vermes I, Haanen C. Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci. 1997;19:119–25.CrossRefPubMed Guchelaar HJ, Vermes A, Vermes I, Haanen C. Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci. 1997;19:119–25.CrossRefPubMed
11.
go back to reference Lafarga M, Lerga A, Andres MA, Polanco JI, Calle E, Berciano MT. Apoptosis induced by methylazoxymethanol in developing rat cerebellum: organization of the cell nucleus and its relationship to DNA and rRNA degradation. Cell Tissue Res. 1997;289:25–38.CrossRefPubMed Lafarga M, Lerga A, Andres MA, Polanco JI, Calle E, Berciano MT. Apoptosis induced by methylazoxymethanol in developing rat cerebellum: organization of the cell nucleus and its relationship to DNA and rRNA degradation. Cell Tissue Res. 1997;289:25–38.CrossRefPubMed
12.
go back to reference Houge G, Robaye B, Eikhom TS, Golstein J, Mellgren G, Gjertsen BT, et al. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol Cell Biol. 1995;15:2051–62.PubMedCentralCrossRefPubMed Houge G, Robaye B, Eikhom TS, Golstein J, Mellgren G, Gjertsen BT, et al. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol Cell Biol. 1995;15:2051–62.PubMedCentralCrossRefPubMed
13.
go back to reference Houge G, Doskeland SO, Boe R, Lanotte M. Selective cleavage of 28S rRNA variable regions V3 and V13 in myeloid leukemia cell apoptosis. FEBS Lett. 1993;315:16–20.CrossRefPubMed Houge G, Doskeland SO, Boe R, Lanotte M. Selective cleavage of 28S rRNA variable regions V3 and V13 in myeloid leukemia cell apoptosis. FEBS Lett. 1993;315:16–20.CrossRefPubMed
14.
go back to reference Gjertsen BT, Cressey LI, Ruchaud S, Houge G, Lanotte M, Doskeland SO. Multiple apoptotic death types triggered through activation of separate pathways by cAMP and inhibitors of protein phosphatases in one (IPC leukemia) cell line. J Cell Sci. 1994;107(Pt 12):3363–77.PubMed Gjertsen BT, Cressey LI, Ruchaud S, Houge G, Lanotte M, Doskeland SO. Multiple apoptotic death types triggered through activation of separate pathways by cAMP and inhibitors of protein phosphatases in one (IPC leukemia) cell line. J Cell Sci. 1994;107(Pt 12):3363–77.PubMed
15.
go back to reference Hoat TX, Nakayashiki H, Tosa Y, Mayama S. Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. Plant J. 2006;46:922–33.CrossRefPubMed Hoat TX, Nakayashiki H, Tosa Y, Mayama S. Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. Plant J. 2006;46:922–33.CrossRefPubMed
17.
go back to reference King KL, Jewell CM, Bortner CD, Cidlowski JA. 28S ribosome degradation in lymphoid cell apoptosis: evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death Differ. 2000;7:994–1001.CrossRefPubMed King KL, Jewell CM, Bortner CD, Cidlowski JA. 28S ribosome degradation in lymphoid cell apoptosis: evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death Differ. 2000;7:994–1001.CrossRefPubMed
18.
go back to reference Parissenti AM, Chapman JA, Kahn HJ, Guo B, Han L, O'Brien P, et al. Association of low tumor RNA integrity with response to chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2010;119:347–56.CrossRefPubMed Parissenti AM, Chapman JA, Kahn HJ, Guo B, Han L, O'Brien P, et al. Association of low tumor RNA integrity with response to chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2010;119:347–56.CrossRefPubMed
19.
go back to reference Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.PubMedCentralCrossRefPubMed Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.PubMedCentralCrossRefPubMed
20.
go back to reference Parissenti AM, Guo B, Pritzker LB, Pritzker KP, Wang X, Zhu M, et al. Tumor RNA disruption predicts survival benefit from breast cancer chemotherapy. Breast Cancer Res Treat. 2015;153:135–44.CrossRefPubMed Parissenti AM, Guo B, Pritzker LB, Pritzker KP, Wang X, Zhu M, et al. Tumor RNA disruption predicts survival benefit from breast cancer chemotherapy. Breast Cancer Res Treat. 2015;153:135–44.CrossRefPubMed
22.
go back to reference Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285:12416–25.PubMedCentralCrossRefPubMed Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285:12416–25.PubMedCentralCrossRefPubMed
23.
go back to reference Armstrong SR, Narendrula R, Guo B, Parissenti AM, McCallum KL, Cull S, et al. Distinct genetic alterations occur in ovarian tumor cells selected for combined resistance to carboplatin and docetaxel. J Ovarian Res. 2012;5:40.PubMedCentralCrossRefPubMed Armstrong SR, Narendrula R, Guo B, Parissenti AM, McCallum KL, Cull S, et al. Distinct genetic alterations occur in ovarian tumor cells selected for combined resistance to carboplatin and docetaxel. J Ovarian Res. 2012;5:40.PubMedCentralCrossRefPubMed
24.
go back to reference He K, Zhou HR, Pestka JJ. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci. 2012;127:382–90.PubMedCentralCrossRefPubMed He K, Zhou HR, Pestka JJ. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci. 2012;127:382–90.PubMedCentralCrossRefPubMed
25.
go back to reference Nadano D, Sato TA. Caspase-3-dependent and -independent degradation of 28 S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J Biol Chem. 2000;275:13967–73.CrossRefPubMed Nadano D, Sato TA. Caspase-3-dependent and -independent degradation of 28 S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J Biol Chem. 2000;275:13967–73.CrossRefPubMed
26.
go back to reference Brown T, Mackey K, et al. Analysis of RNA by Northern and Slot Blot Hybridization. In: Frederick M, Ausubel RB, Kingston RE, DAvid D, Morre JGS, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. Volume 1. United States of America: John Wiley and Sons, Inc; 1997. p. 4.9.1–4.9.16. Brown T, Mackey K, et al. Analysis of RNA by Northern and Slot Blot Hybridization. In: Frederick M, Ausubel RB, Kingston RE, DAvid D, Morre JGS, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. Volume 1. United States of America: John Wiley and Sons, Inc; 1997. p. 4.9.1–4.9.16.
27.
go back to reference Guo B, Hembruff SL, Villeneuve DJ, Kirwan AF, Parissenti AM. Potent killing of paclitaxel- and doxorubicin-resistant breast cancer cells by calphostin C accompanied by cytoplasmic vacuolization. Breast Cancer Res Treat. 2003;82:125–41.CrossRefPubMed Guo B, Hembruff SL, Villeneuve DJ, Kirwan AF, Parissenti AM. Potent killing of paclitaxel- and doxorubicin-resistant breast cancer cells by calphostin C accompanied by cytoplasmic vacuolization. Breast Cancer Res Treat. 2003;82:125–41.CrossRefPubMed
28.
go back to reference Wakeman JA, Maden BE. 28 S ribosomal RNA in vertebrates. Locations of large-scale features revealed by electron microscopy in relation to other features of the sequences. Biochem J. 1989;258:49–56.PubMedCentralCrossRefPubMed Wakeman JA, Maden BE. 28 S ribosomal RNA in vertebrates. Locations of large-scale features revealed by electron microscopy in relation to other features of the sequences. Biochem J. 1989;258:49–56.PubMedCentralCrossRefPubMed
29.
go back to reference Li G, Xiang Y, Sabapathy K, Silverman RH. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J Biol Chem. 2004;279:1123–31.CrossRefPubMed Li G, Xiang Y, Sabapathy K, Silverman RH. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J Biol Chem. 2004;279:1123–31.CrossRefPubMed
32.
go back to reference Naito T, Yokogawa T, Kim HS, Futagami M, Wataya Y, Matsuda A, et al. Anticancer mechanisms of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine (ECyd, TAS-106). Nucleic Acids Res Suppl. 2002;241–2. Naito T, Yokogawa T, Kim HS, Futagami M, Wataya Y, Matsuda A, et al. Anticancer mechanisms of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl) cytosine (ECyd, TAS-106). Nucleic Acids Res Suppl. 2002;241–2.
33.
go back to reference Olmo N, Turnay J. Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem. 2001;268:2113–23.CrossRefPubMed Olmo N, Turnay J. Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem. 2001;268:2113–23.CrossRefPubMed
34.
go back to reference Wataya Y, Takenaka K, Yokogawa T, Matsuda A, Sasaki T, Fukushima M. Cytotoxic mechanism of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd). Nucleic Acids Symp Ser. 1999;42:133–4.CrossRefPubMed Wataya Y, Takenaka K, Yokogawa T, Matsuda A, Sasaki T, Fukushima M. Cytotoxic mechanism of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd). Nucleic Acids Symp Ser. 1999;42:133–4.CrossRefPubMed
35.
go back to reference Samali A, Gilje B, Doskeland SO, Cotter TG, Houge G. The ability to cleave 28S ribosomal RNA during apoptosis is a cell-type dependent trait unrelated to DNA fragmentation. Cell Death Differ. 1997;4:289–93.CrossRefPubMed Samali A, Gilje B, Doskeland SO, Cotter TG, Houge G. The ability to cleave 28S ribosomal RNA during apoptosis is a cell-type dependent trait unrelated to DNA fragmentation. Cell Death Differ. 1997;4:289–93.CrossRefPubMed
36.
go back to reference Banerjee S, An S, Zhou A, Silverman RH, Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. J Virol. 2000;74:8793–802.PubMedCentralCrossRefPubMed Banerjee S, An S, Zhou A, Silverman RH, Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. J Virol. 2000;74:8793–802.PubMedCentralCrossRefPubMed
38.
go back to reference Hashimoto T, Yamauchi L, Hunter T, Kikkawa U, Kamada S. Possible involvement of caspase-7 in cell cycle progression at mitosis. Genes Cells. 2008;13:609–21.CrossRefPubMed Hashimoto T, Yamauchi L, Hunter T, Kikkawa U, Kamada S. Possible involvement of caspase-7 in cell cycle progression at mitosis. Genes Cells. 2008;13:609–21.CrossRefPubMed
39.
go back to reference Yamaguchi K, Uzzo R, Dulin N, Finke JH, Kolenko V. Renal carcinoma cells undergo apoptosis without oligonucleosomal DNA fragmentation. Biochem Biophys Res Commun. 2004;318:710–3.CrossRefPubMed Yamaguchi K, Uzzo R, Dulin N, Finke JH, Kolenko V. Renal carcinoma cells undergo apoptosis without oligonucleosomal DNA fragmentation. Biochem Biophys Res Commun. 2004;318:710–3.CrossRefPubMed
40.
go back to reference Sakahira H, Enari M, Ohsawa Y, Uchiyama Y, Nagata S. Apoptotic nuclear morphological change without DNA fragmentation. Curr Biol. 1999;9:543–6.CrossRefPubMed Sakahira H, Enari M, Ohsawa Y, Uchiyama Y, Nagata S. Apoptotic nuclear morphological change without DNA fragmentation. Curr Biol. 1999;9:543–6.CrossRefPubMed
41.
go back to reference Yuste VJ, Bayascas JR, Llecha N, Sanchez-Lopez I, Boix J, Comella JX. The absence of oligonucleosomal DNA fragmentation during apoptosis of IMR-5 neuroblastoma cells: disappearance of the caspase-activated DNase. J Biol Chem. 2001;276:22323–31.CrossRefPubMed Yuste VJ, Bayascas JR, Llecha N, Sanchez-Lopez I, Boix J, Comella JX. The absence of oligonucleosomal DNA fragmentation during apoptosis of IMR-5 neuroblastoma cells: disappearance of the caspase-activated DNase. J Biol Chem. 2001;276:22323–31.CrossRefPubMed
42.
go back to reference Ossareh-Nazari B, Nino CA, Bengtson MH, Lee JW, Joazeiro CA, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol. 2014;204:909–17.PubMedCentralCrossRefPubMed Ossareh-Nazari B, Nino CA, Bengtson MH, Lee JW, Joazeiro CA, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol. 2014;204:909–17.PubMedCentralCrossRefPubMed
43.
44.
go back to reference Sprowl JA, Reed K, Armstrong SR, Lanner C, Guo B, Kalatskaya I, et al. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res. 2012;14:R2.PubMedCentralCrossRefPubMed Sprowl JA, Reed K, Armstrong SR, Lanner C, Guo B, Kalatskaya I, et al. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res. 2012;14:R2.PubMedCentralCrossRefPubMed
45.
go back to reference Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.CrossRefPubMed Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.CrossRefPubMed
47.
go back to reference Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin-induced apoptosis: Implications in cardiotoxicity. In Oxygen/Nitrogen Radicals: Cell Injury and Disease. Edited by Vallyathan V, Castranova, Vince, Xianglin Shi. US: Springer; 2002: 119–24: Developments in Molecular and Cellular Biochemistry© 2002. Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin-induced apoptosis: Implications in cardiotoxicity. In Oxygen/Nitrogen Radicals: Cell Injury and Disease. Edited by Vallyathan V, Castranova, Vince, Xianglin Shi. US: Springer; 2002: 119–24: Developments in Molecular and Cellular Biochemistry© 2002.
48.
go back to reference Cao DX, Qiao B, Ge ZQ, Yuan YJ. Comparison of burst of reactive oxygen species and activation of caspase-3 in apoptosis of K562 and HL-60 cells induced by docetaxel. Cancer Lett. 2004;214:103–13.CrossRefPubMed Cao DX, Qiao B, Ge ZQ, Yuan YJ. Comparison of burst of reactive oxygen species and activation of caspase-3 in apoptosis of K562 and HL-60 cells induced by docetaxel. Cancer Lett. 2004;214:103–13.CrossRefPubMed
49.
go back to reference Li D, Ueta E, Kimura T, Yamamoto T, Osaki T. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95:644–50.CrossRefPubMed Li D, Ueta E, Kimura T, Yamamoto T, Osaki T. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95:644–50.CrossRefPubMed
50.
go back to reference Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, et al. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther. 2006;319:1062–9.CrossRefPubMed Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, et al. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther. 2006;319:1062–9.CrossRefPubMed
51.
go back to reference Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–8.CrossRefPubMed Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–8.CrossRefPubMed
52.
go back to reference Liudkovska V, Seweryn M, Czarnocka-Cieciura A, Kufel J. Nucleases involved in rRNA degradation in yeast during apoptosis and autophagy, Abstract 432. In: RNA Society 2014 meeting proceedings. Quebec City, Quebec, Ontario, Canada: The RNA Society; 2014. p. 634–7166. Abstract 432. Liudkovska V, Seweryn M, Czarnocka-Cieciura A, Kufel J. Nucleases involved in rRNA degradation in yeast during apoptosis and autophagy, Abstract 432. In: RNA Society 2014 meeting proceedings. Quebec City, Quebec, Ontario, Canada: The RNA Society; 2014. p. 634–7166. Abstract 432.
53.
go back to reference Gorski JL, Gonzalez IL, Schmickel RD. The secondary structure of human 28S rRNA: the structure and evolution of a mosaic rRNA gene. J Mol Evol. 1987; 24:236–51. Gorski JL, Gonzalez IL, Schmickel RD. The secondary structure of human 28S rRNA: the structure and evolution of a mosaic rRNA gene. J Mol Evol. 1987; 24:236–51.
Metadata
Title
RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines
Authors
Rashmi Narendrula
Kyle Mispel-Beyer
Baoqing Guo
Amadeo M. Parissenti
Laura B. Pritzker
Ken Pritzker
Twinkle Masilamani
Xiaohui Wang
Carita Lannér
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2197-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine