Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | River Blindness | Research article

The prevalence of onchocerciasis in Africa and Yemen, 2000–2018: a geospatial analysis

Authors: Chris A. Schmidt, Elizabeth A. Cromwell, Elex Hill, Katie M. Donkers, Megan F. Schipp, Kimberly B. Johnson, David M. Pigott, Simon I. Hay, LBD 2019 Neglected Tropical Diseases Collaborators

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Onchocerciasis is a disease caused by infection with Onchocerca volvulus, which is transmitted to humans via the bite of several species of black fly, and is responsible for permanent blindness or vision loss, as well as severe skin disease. Predominantly endemic in parts of Africa and Yemen, preventive chemotherapy with mass drug administration of ivermectin is the primary intervention recommended for the elimination of its transmission.

Methods

A dataset of 18,116 geo-referenced prevalence survey datapoints was used to model annual 2000–2018 infection prevalence in Africa and Yemen. Using Bayesian model-based geostatistics, we generated spatially continuous estimates of all-age 2000–2018 onchocerciasis infection prevalence at the 5 × 5-km resolution as well as aggregations to the national level, along with corresponding estimates of the uncertainty in these predictions.

Results

As of 2018, the prevalence of onchocerciasis infection continues to be concentrated across central and western Africa, with the highest mean estimates at the national level in Ghana (12.2%, 95% uncertainty interval [UI] 5.0–22.7). Mean estimates exceed 5% infection prevalence at the national level for Cameroon, Central African Republic, Democratic Republic of the Congo (DRC), Guinea-Bissau, Sierra Leone, and South Sudan.

Conclusions

Our analysis suggests that onchocerciasis infection has declined over the last two decades throughout western and central Africa. Focal areas of Angola, Cameroon, the Democratic Republic of the Congo, Ethiopia, Ghana, Guinea, Mali, Nigeria, South Sudan, and Uganda continue to have mean microfiladermia prevalence estimates exceeding 25%. At and above this level, the continuation or initiation of mass drug administration with ivermectin is supported. If national programs aim to eliminate onchocerciasis infection, additional surveillance or supervision of areas of predicted high prevalence would be warranted to ensure sufficiently high coverage of program interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Progress report on the elimination of human onchocerciasis, 2016–2017. Wkly Epidemiol Rec. 2017;45:681–694. World Health Organization. Progress report on the elimination of human onchocerciasis, 2016–2017. Wkly Epidemiol Rec. 2017;45:681–694.
2.
go back to reference Lawrence J, Sodahlon YK, Ogoussan KT, Hopkins AD. Growth, challenges, and solutions over 25 years of mectizan and the impact on onchocerciasis control. PLoS Negl Trop Dis. 2015;9(5):e0003507.CrossRef Lawrence J, Sodahlon YK, Ogoussan KT, Hopkins AD. Growth, challenges, and solutions over 25 years of mectizan and the impact on onchocerciasis control. PLoS Negl Trop Dis. 2015;9(5):e0003507.CrossRef
3.
go back to reference Lakwo TL, Garms R, Rubaale T, Katabarwa M, Walsh F, Habomugisha P, et al. The disappearance of onchocerciasis from the Itwara focus, western Uganda after elimination of the vector Simulium neavei and 19 years of annual ivermectin treatments. Acta Trop. 2013;126(3):218–21.CrossRef Lakwo TL, Garms R, Rubaale T, Katabarwa M, Walsh F, Habomugisha P, et al. The disappearance of onchocerciasis from the Itwara focus, western Uganda after elimination of the vector Simulium neavei and 19 years of annual ivermectin treatments. Acta Trop. 2013;126(3):218–21.CrossRef
4.
go back to reference Zarroug IMA, Hashim K, ElMubark WA, Shumo ZAI, Salih KAM, ElNojomi NAA, et al. The first confirmed elimination of an onchocerciasis focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg. 2016;95(5):1037–40.CrossRef Zarroug IMA, Hashim K, ElMubark WA, Shumo ZAI, Salih KAM, ElNojomi NAA, et al. The first confirmed elimination of an onchocerciasis focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg. 2016;95(5):1037–40.CrossRef
5.
go back to reference Sauerbrey M, Rakers LJ, Richards FO. Progress toward elimination of onchocerciasis in the Americas. Int. Health. 2018;10(suppl_1):i71–8.CrossRef Sauerbrey M, Rakers LJ, Richards FO. Progress toward elimination of onchocerciasis in the Americas. Int. Health. 2018;10(suppl_1):i71–8.CrossRef
6.
go back to reference Gonzalez RJ, Cruz-Ortiz N, Rizzo N, Richards J, Zea-Flores G, Domínguez A, et al. Successful interruption of transmission of Onchocerca volvulus in the Escuintla-Guatemala focus, Guatemala. PLoS Negl Trop Dis. 2009;3(3):e404.CrossRef Gonzalez RJ, Cruz-Ortiz N, Rizzo N, Richards J, Zea-Flores G, Domínguez A, et al. Successful interruption of transmission of Onchocerca volvulus in the Escuintla-Guatemala focus, Guatemala. PLoS Negl Trop Dis. 2009;3(3):e404.CrossRef
7.
go back to reference Coffeng LE, Stolk WA, Hoerauf A, Habbema D, Bakker R, Hopkins AD, et al. Elimination of African onchocerciasis: modeling the impact of increasing the frequency of ivermectin mass treatment. PLoS One. 2014;9(12):e115886.CrossRef Coffeng LE, Stolk WA, Hoerauf A, Habbema D, Bakker R, Hopkins AD, et al. Elimination of African onchocerciasis: modeling the impact of increasing the frequency of ivermectin mass treatment. PLoS One. 2014;9(12):e115886.CrossRef
8.
go back to reference Verver S, Walker M, Kim YE, Fobi G, Tekle AH, Zouré HGM, et al. How can onchocerciasis elimination in Africa be accelerated? Modeling the impact of increased ivermectin treatment frequency and complementary vector control. Clin Infect Dis. 2018;66(suppl_4):S267–74.CrossRef Verver S, Walker M, Kim YE, Fobi G, Tekle AH, Zouré HGM, et al. How can onchocerciasis elimination in Africa be accelerated? Modeling the impact of increased ivermectin treatment frequency and complementary vector control. Clin Infect Dis. 2018;66(suppl_4):S267–74.CrossRef
9.
go back to reference Lawrence J, Sodahlon YK. Onchocerciasis: the beginning of the end. Int. Health. 2018;10(suppl_1):i1–2.CrossRef Lawrence J, Sodahlon YK. Onchocerciasis: the beginning of the end. Int. Health. 2018;10(suppl_1):i1–2.CrossRef
11.
go back to reference Kamgno J, Pion SD, Chesnais CB, Bakalar MH, D’Ambrosio MV, Mackenzie CD, et al. A test-and-not-treat strategy for onchocerciasis in Loa loa–endemic areas. N Engl J Med. 2017;377(21):2044–52.CrossRef Kamgno J, Pion SD, Chesnais CB, Bakalar MH, D’Ambrosio MV, Mackenzie CD, et al. A test-and-not-treat strategy for onchocerciasis in Loa loa–endemic areas. N Engl J Med. 2017;377(21):2044–52.CrossRef
12.
go back to reference Vinkeles Melchers NVS, Coffeng LE, Boussinesq M, Pedrique B, Pion SDS, Tekle AH, et al. Projected number of people with onchocerciasis–loiasis coinfection in Africa, 1995 to 2025. Clin Infect Dis. 2020;70(11):2281–9.CrossRef Vinkeles Melchers NVS, Coffeng LE, Boussinesq M, Pedrique B, Pion SDS, Tekle AH, et al. Projected number of people with onchocerciasis–loiasis coinfection in Africa, 1995 to 2025. Clin Infect Dis. 2020;70(11):2281–9.CrossRef
14.
go back to reference Cromwell EA, Schmidt CA, Kwong KT, Pigott DM, Mupfasoni D, Biswas G, et al. The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob Health. 2020;8(9):e1186–94.CrossRef Cromwell EA, Schmidt CA, Kwong KT, Pigott DM, Mupfasoni D, Biswas G, et al. The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob Health. 2020;8(9):e1186–94.CrossRef
15.
go back to reference O’Hanlon SJ, Slater HC, Cheke RA, Boatin BA, Coffeng LE, Pion SDS, et al. Model-based geostatistical mapping of the prevalence of Onchocerca volvulus in West Africa. PLoS Negl Trop Dis. 2016;10(1):e0004328.CrossRef O’Hanlon SJ, Slater HC, Cheke RA, Boatin BA, Coffeng LE, Pion SDS, et al. Model-based geostatistical mapping of the prevalence of Onchocerca volvulus in West Africa. PLoS Negl Trop Dis. 2016;10(1):e0004328.CrossRef
16.
go back to reference Zouré HG, Noma M, Tekle AH, Amazigo UV, Diggle PJ, Giorgi E, et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis control: (2) pre-control endemicity levels and estimated number infected. Parasit Vectors. 2014;7(1):326.CrossRef Zouré HG, Noma M, Tekle AH, Amazigo UV, Diggle PJ, Giorgi E, et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis control: (2) pre-control endemicity levels and estimated number infected. Parasit Vectors. 2014;7(1):326.CrossRef
17.
go back to reference Noma M, Nwoke BEB, Nutall I, Tambala PA, Enyong P, Namsenmo A, et al. Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis control (APOC). Ann Trop Med Parasitol. 2002;96(Suppl 1):S29–39.CrossRef Noma M, Nwoke BEB, Nutall I, Tambala PA, Enyong P, Namsenmo A, et al. Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis control (APOC). Ann Trop Med Parasitol. 2002;96(Suppl 1):S29–39.CrossRef
19.
go back to reference Cromwell EA, Osborne JCP, Unnasch TR, Basáñez MG, Gass KM, Barbre KA, et al. Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Negl Trop Dis. 2021;15(7):e0008824.CrossRef Cromwell EA, Osborne JCP, Unnasch TR, Basáñez MG, Gass KM, Barbre KA, et al. Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Negl Trop Dis. 2021;15(7):e0008824.CrossRef
20.
go back to reference Faraway JJ. Linear models with R. Boca Raton: CRC Press; 2005. Faraway JJ. Linear models with R. Boca Raton: CRC Press; 2005.
21.
go back to reference Golding N, Burstein R, Longbottom J, Browne AJ, Fullman N, Osgood-Zimmerman A, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the sustainable development goals. Lancet. 2017;390(10108):2171–82.CrossRef Golding N, Burstein R, Longbottom J, Browne AJ, Fullman N, Osgood-Zimmerman A, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the sustainable development goals. Lancet. 2017;390(10108):2171–82.CrossRef
22.
go back to reference Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L, et al. Mapping child growth failure in Africa between 2000 and 2015. Nature. 2018;555(7694):41–7.CrossRef Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L, et al. Mapping child growth failure in Africa between 2000 and 2015. Nature. 2018;555(7694):41–7.CrossRef
23.
go back to reference Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71(2):319–92.CrossRef Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71(2):319–92.CrossRef
24.
go back to reference Lindgren F, Rue H. Bayesian spatial Modelling with R- INLA. J Stat Softw. 2015;63(19):1–25.CrossRef Lindgren F, Rue H. Bayesian spatial Modelling with R- INLA. J Stat Softw. 2015;63(19):1–25.CrossRef
25.
go back to reference Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Stat Methodol Ser B. 2011;73(4):423–98.CrossRef Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Stat Methodol Ser B. 2011;73(4):423–98.CrossRef
27.
go back to reference Global Administrative Areas (GADM). GADM database of global administrative areas. 2019. Accessed 11 June 2019. Available from: https://gadm.org. Global Administrative Areas (GADM). GADM database of global administrative areas. 2019. Accessed 11 June 2019. Available from: https://​gadm.​org.
29.
go back to reference Higazi TB, Zarroug IMA, Mohamed HA, ElMubark WA, Deran TCM, Aziz N, et al. Interruption of Onchocerca volvulus transmission in the Abu Hamed focus, Sudan. Am J Trop Med Hyg. 2013;89(1):51–7.CrossRef Higazi TB, Zarroug IMA, Mohamed HA, ElMubark WA, Deran TCM, Aziz N, et al. Interruption of Onchocerca volvulus transmission in the Abu Hamed focus, Sudan. Am J Trop Med Hyg. 2013;89(1):51–7.CrossRef
30.
go back to reference Katabarwa MN, Lakwo T, Habomugisha P, Unnasch TR, Garms R, Hudson-Davis L, et al. After 70 years of fighting an age-old scourge, onchocerciasis in Uganda, the end is in sight. Int. Health. 2018;10(suppl_1):i79–88.CrossRef Katabarwa MN, Lakwo T, Habomugisha P, Unnasch TR, Garms R, Hudson-Davis L, et al. After 70 years of fighting an age-old scourge, onchocerciasis in Uganda, the end is in sight. Int. Health. 2018;10(suppl_1):i79–88.CrossRef
31.
go back to reference Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature. 2019;574(7778):353–8.CrossRef Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature. 2019;574(7778):353–8.CrossRef
32.
go back to reference Coffeng LE, Pion SDS, O’Hanlon S, Cousens S, Abiose AO, Fischer PU, et al. Onchocerciasis: the pre-control association between prevalence of palpable nodules and skin microfilariae. PLoS Negl Trop Dis. 2013;7(4):e2168.CrossRef Coffeng LE, Pion SDS, O’Hanlon S, Cousens S, Abiose AO, Fischer PU, et al. Onchocerciasis: the pre-control association between prevalence of palpable nodules and skin microfilariae. PLoS Negl Trop Dis. 2013;7(4):e2168.CrossRef
33.
go back to reference James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858.CrossRef James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858.CrossRef
34.
go back to reference Thompson BH. Studies on the flight range and dispersal of Simulium damnosum (Diptera: Simuliidae) in the rain-forest of Cameroon. Ann Trop Med Parasitol. 1976;70(3):343–54.CrossRef Thompson BH. Studies on the flight range and dispersal of Simulium damnosum (Diptera: Simuliidae) in the rain-forest of Cameroon. Ann Trop Med Parasitol. 1976;70(3):343–54.CrossRef
35.
go back to reference Unnasch TR, Golden A, Cama V, Cantey PT. Diagnostics for onchocerciasis in the era of elimination. Int Health. 2018;10(suppl_1):i20–6.CrossRef Unnasch TR, Golden A, Cama V, Cantey PT. Diagnostics for onchocerciasis in the era of elimination. Int Health. 2018;10(suppl_1):i20–6.CrossRef
36.
go back to reference Worrell C, Mathieu E. Drug coverage surveys for neglected tropical diseases: 10 years of field experience. Am J Trop Med Hyg. 2012;87(2):216–22.CrossRef Worrell C, Mathieu E. Drug coverage surveys for neglected tropical diseases: 10 years of field experience. Am J Trop Med Hyg. 2012;87(2):216–22.CrossRef
Metadata
Title
The prevalence of onchocerciasis in Africa and Yemen, 2000–2018: a geospatial analysis
Authors
Chris A. Schmidt
Elizabeth A. Cromwell
Elex Hill
Katie M. Donkers
Megan F. Schipp
Kimberly B. Johnson
David M. Pigott
Simon I. Hay
LBD 2019 Neglected Tropical Diseases Collaborators
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02486-y

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue