Skip to main content
Top
Published in: BMC Neurology 1/2021

Open Access 01-12-2021 | Rhizotomy | Research

Treatment of spasticity in children and adolescents with cerebral palsy in Northern Europe: a CP-North registry study

Authors: Gunnar Hägglund, Sandra Julsen Hollung, Matti Ahonen, Guro L. Andersen, Guðbjörg Eggertsdóttir, Mark S. Gaston, Reidun Jahnsen, Ira Jeglinsky-Kankainen, Kirsten Nordbye-Nielsen, Ilaria Tresoldi, Ann I. Alriksson-Schmidt

Published in: BMC Neurology | Issue 1/2021

Login to get access

Abstract

Background

Spasticity is present in more than 80% of the population with cerebral palsy (CP). The aim of this study was to describe and compare the use of three spasticity reducing methods; Botulinum toxin-A therapy (BTX-A), Selective dorsal rhizotomy (SDR) and Intrathecal baclofen therapy (ITB) among children and adolescents with CP in six northern European countries.

Methods

This registry-based study included population-based data in children and adolescents with CP born 2002 to 2017 and recorded in the follow-up programs for CP in Sweden, Norway, Denmark, Iceland and Scotland, and a defined cohort in Finland.

Results

A total of 8,817 individuals were included. The proportion of individuals treated with SDR and ITB was significantly different between the countries. SDR treatment ranged from 0% ( Finland and Iceland) to 3.4% (Scotland) and ITB treatment from 2.2% (Sweden) to 3.7% (Denmark and Scotland). BTX-A treatment in the lower extremities reported 2017–2018 ranged from 8.6% in Denmark to 20% in Norway (p < 0.01). Mean age for undergoing SDR ranged from 4.5 years in Norway to 7.3 years in Denmark (p < 0.01). Mean age at ITB surgery ranged from 6.3 years in Norway to 10.1 years in Finland (p < 0.01). Mean age for BTX-A treatment ranged from 7.1 years in Denmark to 10.3 years in Iceland (p < 0.01). Treatment with SDR was most common in Gross Motor Function Classification System (GMFCS) level III, ITB in level V, and BTX-A in level I. The most common muscle treated with BTX-A was the calf muscle, with the highest proportion in GMFCS level I. BTX-A treatment of hamstring and hip muscles was most common in GMFCS levels IV-V in all countries.

Conclusion

There were statistically significant differences between countries regarding the proportion of children and adolescents with CP treated with the three spasticity reducing methods, mean age for treatment and treatment related to GMFCS level. This is likely due to differences in the availability of these treatment methods and/or differences in preferences of treatment methods among professionals and possibly patients across countries.
Literature
2.
go back to reference Himmelmann K, Hagberg G, Wiklund LM, Eek MN, Uvebrant P. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol. 2007;49:246–51.CrossRef Himmelmann K, Hagberg G, Wiklund LM, Eek MN, Uvebrant P. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol. 2007;49:246–51.CrossRef
3.
go back to reference Hägglund G, Wagner P. Spasticity of the gastrocnemius muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy. A registry analysis of 2796 examinations in 355 children. Acta Orthop. 2011;82:744–8.CrossRef Hägglund G, Wagner P. Spasticity of the gastrocnemius muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy. A registry analysis of 2796 examinations in 355 children. Acta Orthop. 2011;82:744–8.CrossRef
4.
go back to reference Hicks JL, Schwartz MH, Arnold AS, Delp SL. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J Biomech. 2008;41:960–7.CrossRef Hicks JL, Schwartz MH, Arnold AS, Delp SL. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J Biomech. 2008;41:960–7.CrossRef
5.
go back to reference Kumar R, Dhaliwal H, Kukreja R, Singh B. The botulinum toxin as a therapeutic agent: molecule structure and mechanism of action in motor and sensory systems. Semin Neurol. 2016;36:10–9.CrossRef Kumar R, Dhaliwal H, Kukreja R, Singh B. The botulinum toxin as a therapeutic agent: molecule structure and mechanism of action in motor and sensory systems. Semin Neurol. 2016;36:10–9.CrossRef
6.
go back to reference Ertzgaard P, Campo C, Calabrese A. Efficacy and safety of oral baclofen in the management of spasticity: a rationale for intrathecal baclofen. J Rehabil Med. 2017;49:193–203.CrossRef Ertzgaard P, Campo C, Calabrese A. Efficacy and safety of oral baclofen in the management of spasticity: a rationale for intrathecal baclofen. J Rehabil Med. 2017;49:193–203.CrossRef
7.
go back to reference Peacock WJ, Staudt LA. Spasticity in cerebral palsy and the selective posterior rhizotomy procedure. J Child Neurol. 1990;5:179–85.CrossRef Peacock WJ, Staudt LA. Spasticity in cerebral palsy and the selective posterior rhizotomy procedure. J Child Neurol. 1990;5:179–85.CrossRef
8.
go back to reference Alriksson-Schmidt AI, Ahonen M, Andersen GL, Eggertsdóttir G, Haula T, Jahnsen R, et al. CP-North: living life in the Nordic countries? A retrospective register research protocol on individuals with cerebral palsy and their parents living in Sweden, Norway, Denmark, Finland and Iceland. BMJ Open. 2019;9:e024438.CrossRef Alriksson-Schmidt AI, Ahonen M, Andersen GL, Eggertsdóttir G, Haula T, Jahnsen R, et al. CP-North: living life in the Nordic countries? A retrospective register research protocol on individuals with cerebral palsy and their parents living in Sweden, Norway, Denmark, Finland and Iceland. BMJ Open. 2019;9:e024438.CrossRef
9.
go back to reference Alriksson-Schmidt A, Arner M, Westbom L, Krumlinde-Sundholm L, Nordmark E, Rodby-Bousquet E, Hägglund G. A combined surveillance program and quality registry improves management of childhood disability. Disabil Rehabil. 2017;39:830–6.CrossRef Alriksson-Schmidt A, Arner M, Westbom L, Krumlinde-Sundholm L, Nordmark E, Rodby-Bousquet E, Hägglund G. A combined surveillance program and quality registry improves management of childhood disability. Disabil Rehabil. 2017;39:830–6.CrossRef
10.
go back to reference Rasmussen HM, Nordbye-Nielsen K, Møller-Madsen B, Johansen M, Ellitsgaard N, Pedersen CR, et al. The Danish cerebral palsy follow-up program. Clin Epidemiol. 2016;8:457–60.CrossRef Rasmussen HM, Nordbye-Nielsen K, Møller-Madsen B, Johansen M, Ellitsgaard N, Pedersen CR, et al. The Danish cerebral palsy follow-up program. Clin Epidemiol. 2016;8:457–60.CrossRef
11.
go back to reference Westbom L, Hägglund G, Nordmark E. Cerebral palsy in a total population 4–11 years olds in southern Sweden. Prevalence and distribution according to different CP classification systems. BMC Pediatrics. 2007;7:41.CrossRef Westbom L, Hägglund G, Nordmark E. Cerebral palsy in a total population 4–11 years olds in southern Sweden. Prevalence and distribution according to different CP classification systems. BMC Pediatrics. 2007;7:41.CrossRef
14.
go back to reference Bugler KE, Gaston MS, Robb JE. Distribution and motor ability of children with cerebral palsy in Scotland: a registry analysis. Scott Med J. 2019;64:16–21.CrossRef Bugler KE, Gaston MS, Robb JE. Distribution and motor ability of children with cerebral palsy in Scotland: a registry analysis. Scott Med J. 2019;64:16–21.CrossRef
15.
go back to reference Hirvonen M, Ojala R, Korhonen P, Haataja P, Eriksson K, Gissler M, Luukkaala T, Tammela O. Cerebral palsy among children born moderately and late preterm. Pediatrics. 2014;134:e1584.CrossRef Hirvonen M, Ojala R, Korhonen P, Haataja P, Eriksson K, Gissler M, Luukkaala T, Tammela O. Cerebral palsy among children born moderately and late preterm. Pediatrics. 2014;134:e1584.CrossRef
16.
go back to reference Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.CrossRef Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.CrossRef
17.
go back to reference Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50:744–50.CrossRef Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50:744–50.CrossRef
18.
go back to reference Lundkvist Josenby A, Czuba T, Alriksson-Schmidt AI. Gender differences in treatments and interventions received by children and adolescents with cerebral palsy. BMC Pediatr. 2020;20:45.CrossRef Lundkvist Josenby A, Czuba T, Alriksson-Schmidt AI. Gender differences in treatments and interventions received by children and adolescents with cerebral palsy. BMC Pediatr. 2020;20:45.CrossRef
19.
go back to reference Franzén M, Hägglund G, Alriksson Schmidt A. Treatment with botulinum toxin A in a total population of children with cerebral palsy. A retrospective cohort registry study. BMC Musculoskeletal. 2017;18:520.CrossRef Franzén M, Hägglund G, Alriksson Schmidt A. Treatment with botulinum toxin A in a total population of children with cerebral palsy. A retrospective cohort registry study. BMC Musculoskeletal. 2017;18:520.CrossRef
20.
go back to reference Himmelmann K, Hagberg G, Wiklund LM, Eek MN, Uvebrant P. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol. 2007;49:246–51.CrossRef Himmelmann K, Hagberg G, Wiklund LM, Eek MN, Uvebrant P. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol. 2007;49:246–51.CrossRef
21.
go back to reference Blomstedt G, Sainio K, Merikanto J, von Wendt L. Follow-up of children with cerebral palsy after selective posterior rhizotomy with intensive physiotherapy or physiotherapy alone. Neuropediatrics. 2003;34:67–71.CrossRef Blomstedt G, Sainio K, Merikanto J, von Wendt L. Follow-up of children with cerebral palsy after selective posterior rhizotomy with intensive physiotherapy or physiotherapy alone. Neuropediatrics. 2003;34:67–71.CrossRef
22.
go back to reference Tedroff K, Hägglund G, Miller F. Long term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2020;62:554–62.CrossRef Tedroff K, Hägglund G, Miller F. Long term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2020;62:554–62.CrossRef
23.
go back to reference Brochard S, Remy-Neris O, Filipetti P, Bussel B. Intrathecal baclofen infusion for ambulant children with cerebral palsy. Pediatr Neurol. 2009;40:265–70.CrossRef Brochard S, Remy-Neris O, Filipetti P, Bussel B. Intrathecal baclofen infusion for ambulant children with cerebral palsy. Pediatr Neurol. 2009;40:265–70.CrossRef
26.
go back to reference Garcia MAC, Vargas CD. Is somatosensory electrical stimulation effective in relieving spasticity? A systematic review. J Musculoskelet Neuronal Interact. 2019;19:317–25.PubMedPubMedCentral Garcia MAC, Vargas CD. Is somatosensory electrical stimulation effective in relieving spasticity? A systematic review. J Musculoskelet Neuronal Interact. 2019;19:317–25.PubMedPubMedCentral
Metadata
Title
Treatment of spasticity in children and adolescents with cerebral palsy in Northern Europe: a CP-North registry study
Authors
Gunnar Hägglund
Sandra Julsen Hollung
Matti Ahonen
Guro L. Andersen
Guðbjörg Eggertsdóttir
Mark S. Gaston
Reidun Jahnsen
Ira Jeglinsky-Kankainen
Kirsten Nordbye-Nielsen
Ilaria Tresoldi
Ann I. Alriksson-Schmidt
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2021
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-021-02289-3

Other articles of this Issue 1/2021

BMC Neurology 1/2021 Go to the issue