Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Review

Review on solving the forward problem in EEG source analysis

Authors: Hans Hallez, Bart Vanrumste, Roberta Grech, Joseph Muscat, Wim De Clercq, Anneleen Vergult, Yves D'Asseler, Kenneth P Camilleri, Simon G Fabri, Sabine Van Huffel, Ignace Lemahieu

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes.

Methods

While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field.

Results

It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method.

Conclusion

Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berger H: Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1929, 87: 527-570. 10.1007/BF01797193. Berger H: Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1929, 87: 527-570. 10.1007/BF01797193.
2.
go back to reference Niedermeyer E, Lopes Da Silva F: Electroencephalography. 1993, Baltimore: Williams and Wilkins Niedermeyer E, Lopes Da Silva F: Electroencephalography. 1993, Baltimore: Williams and Wilkins
3.
go back to reference Baillet S, Mosher JC, Leahy RM: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine. 2001, November: 14-30. 10.1109/79.962275. Baillet S, Mosher JC, Leahy RM: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine. 2001, November: 14-30. 10.1109/79.962275.
4.
go back to reference Kiloh LG, Mc Comas AJ, Osselton JW, Upton ARM: Clinical Electroencephalography. 1981, Butterworths Kiloh LG, Mc Comas AJ, Osselton JW, Upton ARM: Clinical Electroencephalography. 1981, Butterworths
5.
go back to reference Gray H: Gray's Anatomy. 1973, Longman Group Ltd Gray H: Gray's Anatomy. 1973, Longman Group Ltd
6.
go back to reference Gulrajani RM: Bioelectricity and Biomagnetism. 1998, New York: John Wiley & Sons, Inc Gulrajani RM: Bioelectricity and Biomagnetism. 1998, New York: John Wiley & Sons, Inc
7.
go back to reference Johnston D, Wu SMS: Foundations of Cellular Neurophysiology. 1994, the MIT Press, Massachusetts Institute of Technology Johnston D, Wu SMS: Foundations of Cellular Neurophysiology. 1994, the MIT Press, Massachusetts Institute of Technology
8.
go back to reference Gulrajani RM: Bioelectricity and Biomagnetism, chap Electroencephalography. 1998, John Wiley & Sons, Inc, 469-524. Gulrajani RM: Bioelectricity and Biomagnetism, chap Electroencephalography. 1998, John Wiley & Sons, Inc, 469-524.
9.
go back to reference Schaul N: The Fundamental Neural Mechanisms of Electroencephalography. Electroencephalography and Clinical Neurophysiology. 1998, 106: 101-107. 10.1016/S0013-4694(97)00111-9.PubMed Schaul N: The Fundamental Neural Mechanisms of Electroencephalography. Electroencephalography and Clinical Neurophysiology. 1998, 106: 101-107. 10.1016/S0013-4694(97)00111-9.PubMed
10.
go back to reference Malmivuo J, Plonsey R: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. 1995, New York: Oxford University Press Malmivuo J, Plonsey R: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. 1995, New York: Oxford University Press
11.
go back to reference Speckmann EJ, Elger CE: Introduction to the Neurophysiology, basis of the EEG and DC potentials. Electroencephalography, Basic Principles, Clinical Applications and Related Fields. Edited by: Niedermeyer E, Lopes da Silva F. 1987, Urban and Schwarzenberg, 1-13. 2 Speckmann EJ, Elger CE: Introduction to the Neurophysiology, basis of the EEG and DC potentials. Electroencephalography, Basic Principles, Clinical Applications and Related Fields. Edited by: Niedermeyer E, Lopes da Silva F. 1987, Urban and Schwarzenberg, 1-13. 2
12.
go back to reference Lopes da Silva F, Van Rotterdam A: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, chap Biophysical aspects of EEG and magnetoencephalogram generation. 1993, Williams and Wilkins, 78-91. Lopes da Silva F, Van Rotterdam A: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, chap Biophysical aspects of EEG and magnetoencephalogram generation. 1993, Williams and Wilkins, 78-91.
13.
go back to reference Plonsey R, Heppner DB: Considerations of quasistationarity in electrophysiological systems. Bulletin of Mathematical Biophysics. 1967, 29 (4): 657-664. 10.1007/BF02476917.PubMed Plonsey R, Heppner DB: Considerations of quasistationarity in electrophysiological systems. Bulletin of Mathematical Biophysics. 1967, 29 (4): 657-664. 10.1007/BF02476917.PubMed
14.
go back to reference Vanrumste B: EEG dipole source analysis in a realistic head model. PhD thesis. 2001, Ghent University Vanrumste B: EEG dipole source analysis in a realistic head model. PhD thesis. 2001, Ghent University
15.
go back to reference Plonsey R: Bioelectric Phenomena. 1969, McGraw-Hill, New York Plonsey R: Bioelectric Phenomena. 1969, McGraw-Hill, New York
16.
go back to reference Rush S, Driscoll DA: Current distribution in the brain from surface electrodes. Anesth. Analgesia. 1968, 47: 717-723. Rush S, Driscoll DA: Current distribution in the brain from surface electrodes. Anesth. Analgesia. 1968, 47: 717-723.
17.
go back to reference Wolters C: Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localisation in the Human Brain. PhD thesis. 2003, Universität Leipzig Wolters C: Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localisation in the Human Brain. PhD thesis. 2003, Universität Leipzig
18.
go back to reference Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage. 2006, 30 (3): 813-826. 10.1016/j.neuroimage.2005.10.014.PubMed Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage. 2006, 30 (3): 813-826. 10.1016/j.neuroimage.2005.10.014.PubMed
19.
go back to reference Nicholson P: Specific impedance of cerebral white matter. Experimental Neurology. 1965, 13: 386-401. 10.1016/0014-4886(65)90126-3.PubMed Nicholson P: Specific impedance of cerebral white matter. Experimental Neurology. 1965, 13: 386-401. 10.1016/0014-4886(65)90126-3.PubMed
20.
go back to reference Geddes LA, Baker LE: The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967, 5 (3): 271-293. 10.1007/BF02474537.PubMed Geddes LA, Baker LE: The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967, 5 (3): 271-293. 10.1007/BF02474537.PubMed
21.
go back to reference Basser P, Mattiello J, LeBihan D: MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal. 1994, 66: 259-267.PubMedCentralPubMed Basser P, Mattiello J, LeBihan D: MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal. 1994, 66: 259-267.PubMedCentralPubMed
22.
go back to reference Tuch D, Wedeen V, Dale A, George J, Belliveau J: Conductivity tensor mapping of the human brain using Diffusion Tensor MRI. Proceedings in National Academie of Science. 2001, 98 (20): 11697-11701. 10.1073/pnas.171473898. Tuch D, Wedeen V, Dale A, George J, Belliveau J: Conductivity tensor mapping of the human brain using Diffusion Tensor MRI. Proceedings in National Academie of Science. 2001, 98 (20): 11697-11701. 10.1073/pnas.171473898.
23.
go back to reference Haueisen J, Tuch D, Ramon C, Schimpf P, Wedeen V, George J, Belliveau J: The Influence of Brain Tissue Anisotropy on Human EEG and MEG. NeuroImage. 2002, 15: 159-166. 10.1006/nimg.2001.0962.PubMed Haueisen J, Tuch D, Ramon C, Schimpf P, Wedeen V, George J, Belliveau J: The Influence of Brain Tissue Anisotropy on Human EEG and MEG. NeuroImage. 2002, 15: 159-166. 10.1006/nimg.2001.0962.PubMed
24.
go back to reference Hallez H, Van Hese P, Vanrumste B, Boon P, D'Asseler Y, Lemahieu I, Van de Walle R: Dipole Localization Errors due to not Incorporating Compartments with Anisotropic Conductivities: Simulation Study in a Spherical Head Model. International Journal of Bioelectromagnetism. 2005, 7: 134-137. Hallez H, Van Hese P, Vanrumste B, Boon P, D'Asseler Y, Lemahieu I, Van de Walle R: Dipole Localization Errors due to not Incorporating Compartments with Anisotropic Conductivities: Simulation Study in a Spherical Head Model. International Journal of Bioelectromagnetism. 2005, 7: 134-137.
25.
go back to reference Pursula A, Nenonen J, Somersalo E, Ilmoniemi E, Katila T: Bioelectromagnetic calculations in anisotropic volume conducters. Proceedings of Biomag2000. 2000, 659-662. Pursula A, Nenonen J, Somersalo E, Ilmoniemi E, Katila T: Bioelectromagnetic calculations in anisotropic volume conducters. Proceedings of Biomag2000. 2000, 659-662.
26.
go back to reference Baumann S, Wozny D, Kelly S, Meno F: the Electrical Conductivity of Human Cerebrospinal Fluid at Body Temperature. IEEE Transactions on Biomedical Engineering. 1997, 44 (3): 220-223. 10.1109/10.554770.PubMed Baumann S, Wozny D, Kelly S, Meno F: the Electrical Conductivity of Human Cerebrospinal Fluid at Body Temperature. IEEE Transactions on Biomedical Engineering. 1997, 44 (3): 220-223. 10.1109/10.554770.PubMed
27.
go back to reference Awada K, Jackson D, Baumann S, Williams J, Wilton D, Fink PW, Prasky BR: Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2D-model. IEEE Transactions on Biomedical Engineering. 1998, 45 (9): 1135-1145. 10.1109/10.709557.PubMed Awada K, Jackson D, Baumann S, Williams J, Wilton D, Fink PW, Prasky BR: Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2D-model. IEEE Transactions on Biomedical Engineering. 1998, 45 (9): 1135-1145. 10.1109/10.709557.PubMed
28.
go back to reference Oostendorp T, Delbeke J, Stegeman D: The conductivity of the human skull: results of in vivo and in vitro measurements. Biomedical Engineering, IEEE Transactions on. 2000, 47 (11): 1487-1492. 10.1109/TBME.2000.880100. Oostendorp T, Delbeke J, Stegeman D: The conductivity of the human skull: results of in vivo and in vitro measurements. Biomedical Engineering, IEEE Transactions on. 2000, 47 (11): 1487-1492. 10.1109/TBME.2000.880100.
29.
go back to reference Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: Dipole location errors in electroencephalogram source analysis due to volume conductor model errors. Medical and Biological Engineering and Computing. 2000, 38 (5): 528-534. 10.1007/BF02345748.PubMed Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: Dipole location errors in electroencephalogram source analysis due to volume conductor model errors. Medical and Biological Engineering and Computing. 2000, 38 (5): 528-534. 10.1007/BF02345748.PubMed
30.
go back to reference Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F: In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. Biomedical Engineering, IEEE Transactions on. 2003, 50 (6): 754-767. 10.1109/TBME.2003.812164. Gonçalves S, de Munck J, Verbunt J, Bijma F, Heethaar R, Lopes da Silva F: In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. Biomedical Engineering, IEEE Transactions on. 2003, 50 (6): 754-767. 10.1109/TBME.2003.812164.
31.
go back to reference Clerc M, Badier JM, Adde G, Kybic J, Papadopoulo T: Boundary element formulation for electric impedance tomography. ESAIM: Proceedings. 2005, 14: 63-71. Clerc M, Badier JM, Adde G, Kybic J, Papadopoulo T: Boundary element formulation for electric impedance tomography. ESAIM: Proceedings. 2005, 14: 63-71.
32.
go back to reference Gutirrez D, Nehorai A, Muravchik CH: Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans Biomed Eng. 2004, 51 (12): 2113-2122. 10.1109/TBME.2004.836507. Gutirrez D, Nehorai A, Muravchik CH: Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans Biomed Eng. 2004, 51 (12): 2113-2122. 10.1109/TBME.2004.836507.
33.
go back to reference Lai Y, van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol. 2005, 116 (2): 456-465. 10.1016/j.clinph.2004.08.017.PubMed Lai Y, van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol. 2005, 116 (2): 456-465. 10.1016/j.clinph.2004.08.017.PubMed
34.
go back to reference Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC: Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 2003, 16: 29-38. 10.1023/A:1025606415858.PubMed Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC: Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 2003, 16: 29-38. 10.1023/A:1025606415858.PubMed
35.
go back to reference Rojansky : Electromagnetic fields and waves. 1971, Dover Rojansky : Electromagnetic fields and waves. 1971, Dover
36.
go back to reference de Munck J, Van Dijk B, Spekreijse H: Mathematical Dipoles are Adequate to Describe Realistic Generators of Human Brain Activity. IEEE Transactions on Biomedical Engineering. 1988, 35 (11): 960-965. 10.1109/10.8677.PubMed de Munck J, Van Dijk B, Spekreijse H: Mathematical Dipoles are Adequate to Describe Realistic Generators of Human Brain Activity. IEEE Transactions on Biomedical Engineering. 1988, 35 (11): 960-965. 10.1109/10.8677.PubMed
37.
go back to reference He B, Yao D, Lian J: High-resolution EEG: on the cortical equivalent dipole layer imaging. Clinical Neurophysiology. 2002, 113 (2): 227-35. 10.1016/S1388-2457(01)00740-4.PubMed He B, Yao D, Lian J: High-resolution EEG: on the cortical equivalent dipole layer imaging. Clinical Neurophysiology. 2002, 113 (2): 227-35. 10.1016/S1388-2457(01)00740-4.PubMed
38.
go back to reference Hara J, Musha T, Shankle WR: Approximating Dipoles from Human EEG Activity: The Effect of Dipole Source Configuration on Dipolarity Using Single Dipole Models. IEEE Transactions on Biomedical Engineering. 1999, 46 (2): 125-129. 10.1109/10.740874.PubMed Hara J, Musha T, Shankle WR: Approximating Dipoles from Human EEG Activity: The Effect of Dipole Source Configuration on Dipolarity Using Single Dipole Models. IEEE Transactions on Biomedical Engineering. 1999, 46 (2): 125-129. 10.1109/10.740874.PubMed
39.
go back to reference Karp PJ, Katila TE, Saarinen M, Siltanen P, Varpula TT: The normal human magnetocardiogram. II. A multipole analysis. Circ Res. 1980, 47: 117-130.PubMed Karp PJ, Katila TE, Saarinen M, Siltanen P, Varpula TT: The normal human magnetocardiogram. II. A multipole analysis. Circ Res. 1980, 47: 117-130.PubMed
40.
go back to reference Faugeras O, Clement F, Deriche R, Keriven R, Papadopoulo T, Roberts J, Vieville T, Devernay F, Gomes J, Hermosillo G, Kornprobst P, Lingrand D: The Inverse EEG and MEG Problems: The Adjoint State Approach I: The Continuous Case. Tech rep. 1999, INRIA Faugeras O, Clement F, Deriche R, Keriven R, Papadopoulo T, Roberts J, Vieville T, Devernay F, Gomes J, Hermosillo G, Kornprobst P, Lingrand D: The Inverse EEG and MEG Problems: The Adjoint State Approach I: The Continuous Case. Tech rep. 1999, INRIA
41.
go back to reference Jerbi K, Baillet S, Mosher JC, Nolte G, Garnero L, Leahy RM: Localization of realistic cortical activity in MEG using current multipoles. Neuroimage. 2004, 22 (2): 779-793. 10.1016/j.neuroimage.2004.02.010.PubMed Jerbi K, Baillet S, Mosher JC, Nolte G, Garnero L, Leahy RM: Localization of realistic cortical activity in MEG using current multipoles. Neuroimage. 2004, 22 (2): 779-793. 10.1016/j.neuroimage.2004.02.010.PubMed
42.
go back to reference Jerbi K, Mosher JC, Baillet S, Leahy RM: On MEG forward modelling using multipolar expansions. Physics in Medicine and Biology. 2002, 47 (4): 523-555. 10.1088/0031-9155/47/4/301.PubMed Jerbi K, Mosher JC, Baillet S, Leahy RM: On MEG forward modelling using multipolar expansions. Physics in Medicine and Biology. 2002, 47 (4): 523-555. 10.1088/0031-9155/47/4/301.PubMed
43.
go back to reference Frank E: Electric Potential Produced by Two Point Current Sources in a Homogeneous Conduction Sphere. Journal of Applied Physics. 1952, 23 (11): 1225-1228. 10.1063/1.1702037. Frank E: Electric Potential Produced by Two Point Current Sources in a Homogeneous Conduction Sphere. Journal of Applied Physics. 1952, 23 (11): 1225-1228. 10.1063/1.1702037.
44.
go back to reference Ary JP, Klein SA, Fender DH: Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thicknesses. IEEE Transactions on Biomedical Engineering. 1981, BME-28 (6): 447-452. 10.1109/TBME.1981.324817. Ary JP, Klein SA, Fender DH: Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thicknesses. IEEE Transactions on Biomedical Engineering. 1981, BME-28 (6): 447-452. 10.1109/TBME.1981.324817.
45.
go back to reference Salu Y, Cohen LG, Rose D, Sato S, Kufta C, Hallett M: An Improved Method for Localizing Electric Brain Dipoles. IEEE Transactions on Biomedical Engineering. 1990, 37 (7): 699-705. 10.1109/10.55680.PubMed Salu Y, Cohen LG, Rose D, Sato S, Kufta C, Hallett M: An Improved Method for Localizing Electric Brain Dipoles. IEEE Transactions on Biomedical Engineering. 1990, 37 (7): 699-705. 10.1109/10.55680.PubMed
46.
go back to reference Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: Comparison of performance of spherical and realistic head models in dipole localization from noisy EEG. Medical Engineering & Physics. 2002, 24: 403-418. 10.1016/S1350-4533(02)00036-X. Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: Comparison of performance of spherical and realistic head models in dipole localization from noisy EEG. Medical Engineering & Physics. 2002, 24: 403-418. 10.1016/S1350-4533(02)00036-X.
47.
go back to reference Huerta MA, Gonzalez G: The Surface Potentials Produced by Electric Sources in Stratified Spherical and Prolate Spheroidal Volume Conductors. International Journal of Electronics. 1983, 54 (5): 657-671. 10.1080/00207218308938765. Huerta MA, Gonzalez G: The Surface Potentials Produced by Electric Sources in Stratified Spherical and Prolate Spheroidal Volume Conductors. International Journal of Electronics. 1983, 54 (5): 657-671. 10.1080/00207218308938765.
48.
go back to reference de Munck J, Peters M: A Fast Method to Compute the Potential in the Multiphere Model. IEEE Transactions on Biomedical Engineering. 1993, 40 (11): 1166-1174. 10.1109/10.245635.PubMed de Munck J, Peters M: A Fast Method to Compute the Potential in the Multiphere Model. IEEE Transactions on Biomedical Engineering. 1993, 40 (11): 1166-1174. 10.1109/10.245635.PubMed
49.
go back to reference Zhang Z: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Physics in Medicine and Biology. 1995, 40: 335-349. 10.1088/0031-9155/40/3/001.PubMed Zhang Z: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Physics in Medicine and Biology. 1995, 40: 335-349. 10.1088/0031-9155/40/3/001.PubMed
50.
go back to reference Meijs P, Peters MJ: The EEG and MEG using a model of eccentric spheres to describe the human head. IEEE Transactions on Biomedical Engineering. 1987, 34: 913-920. 10.1109/TBME.1987.325929.PubMed Meijs P, Peters MJ: The EEG and MEG using a model of eccentric spheres to describe the human head. IEEE Transactions on Biomedical Engineering. 1987, 34: 913-920. 10.1109/TBME.1987.325929.PubMed
51.
go back to reference Kariotou F: Electroencephalography in ellipsoidal geometry. Journal of Mathematical Analysis and Applications. 2004, 290: 324-42. 10.1016/j.jmaa.2003.09.066. Kariotou F: Electroencephalography in ellipsoidal geometry. Journal of Mathematical Analysis and Applications. 2004, 290: 324-42. 10.1016/j.jmaa.2003.09.066.
52.
go back to reference Vatta F, Bruno P, Inchingolo P: Multiregion Bicentric-Spheres Models of the Head for the Simulation of Bioelectric Phenomena. IEEE Transactions in Biomedical Engineering. 2005, 52 (3): 384-389. 10.1109/TBME.2004.843258. Vatta F, Bruno P, Inchingolo P: Multiregion Bicentric-Spheres Models of the Head for the Simulation of Bioelectric Phenomena. IEEE Transactions in Biomedical Engineering. 2005, 52 (3): 384-389. 10.1109/TBME.2004.843258.
53.
go back to reference Berg P, Scherg M: A Fast Method for Forward Computation of Multiple-Shell Spherical Head Models. Electroencephalography and Clinical Neurophysiology. 1994, 90: 58-64. 10.1016/0013-4694(94)90113-9.PubMed Berg P, Scherg M: A Fast Method for Forward Computation of Multiple-Shell Spherical Head Models. Electroencephalography and Clinical Neurophysiology. 1994, 90: 58-64. 10.1016/0013-4694(94)90113-9.PubMed
54.
go back to reference Roth B, Gorbach A, Sato S: How well does a three-shell model predict positions of dipoles in a realistically shaped head?. Electroencephalography and Clinical Neurophysiology. 1993, 87: 175-184. 10.1016/0013-4694(93)90017-P.PubMed Roth B, Gorbach A, Sato S: How well does a three-shell model predict positions of dipoles in a realistically shaped head?. Electroencephalography and Clinical Neurophysiology. 1993, 87: 175-184. 10.1016/0013-4694(93)90017-P.PubMed
55.
go back to reference Roth BJ, Ko D, von Albertini-Carletti IR, Scaffidi D, Sato S: Dipole Localization in Patients with Epilepsy Using the Realistic Shaped Head Model. Electroencephalography and Clinical Neurophysiology. 1997, 102 (3): 160-166. 10.1016/S0013-4694(96)95111-5. Roth BJ, Ko D, von Albertini-Carletti IR, Scaffidi D, Sato S: Dipole Localization in Patients with Epilepsy Using the Realistic Shaped Head Model. Electroencephalography and Clinical Neurophysiology. 1997, 102 (3): 160-166. 10.1016/S0013-4694(96)95111-5.
56.
go back to reference Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A: The Need for Correct Realistic Geometry in the Inverse EEG Problem. IEEE Transactions on Biomedical Engineering. 1999, 46 (11): 1281-1287. 10.1109/10.797987.PubMed Huiskamp G, Vroeijenstijn M, van Dijk R, Wieneke G, van Huffelen A: The Need for Correct Realistic Geometry in the Inverse EEG Problem. IEEE Transactions on Biomedical Engineering. 1999, 46 (11): 1281-1287. 10.1109/10.797987.PubMed
57.
go back to reference Cuffin BN: Effects of Local Variations in Skull and Scalp Thickness on EEG's and MEG's. IEEE Transactions on Biomedical Engineering. 1993, 40: 42-48. 10.1109/10.204770.PubMed Cuffin BN: Effects of Local Variations in Skull and Scalp Thickness on EEG's and MEG's. IEEE Transactions on Biomedical Engineering. 1993, 40: 42-48. 10.1109/10.204770.PubMed
58.
go back to reference Chauveau N, Franceries X, Doyon B, Rigaud B, Morucci JP, Celsis P: Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Human Brain Mapping. 2003, 21 (2): 86-97. 10.1002/hbm.10152. Chauveau N, Franceries X, Doyon B, Rigaud B, Morucci JP, Celsis P: Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Human Brain Mapping. 2003, 21 (2): 86-97. 10.1002/hbm.10152.
59.
go back to reference Ermer JJ, Mosher JC, Baillet S, Leahy RM: Rapidly recomputable EEG forward models for realistic head shapes. Physics in Medicine and Biology. 2001, 46 (4): 1265-1281. 10.1088/0031-9155/46/4/324.PubMed Ermer JJ, Mosher JC, Baillet S, Leahy RM: Rapidly recomputable EEG forward models for realistic head shapes. Physics in Medicine and Biology. 2001, 46 (4): 1265-1281. 10.1088/0031-9155/46/4/324.PubMed
60.
go back to reference He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T: Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Transactions on Biomedical Engineering. 1987, 34 (6): 406-414. 10.1109/TBME.1987.326056.PubMed He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T: Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Transactions on Biomedical Engineering. 1987, 34 (6): 406-414. 10.1109/TBME.1987.326056.PubMed
61.
go back to reference Geselowitz DB: On Bioelectric Potentials in an Inhomogeneous Volume Conductor. Biophysics Jounal. 1967, 7: 1-11. Geselowitz DB: On Bioelectric Potentials in an Inhomogeneous Volume Conductor. Biophysics Jounal. 1967, 7: 1-11.
62.
go back to reference Barnard ACL, Duck IM, Lynn MS: The Application of Electromagnetic Theory to Electrocardiography: I. Derivation of the Integral Equations. Biophysics Journal. 1967, 7 (5): 443-462. Barnard ACL, Duck IM, Lynn MS: The Application of Electromagnetic Theory to Electrocardiography: I. Derivation of the Integral Equations. Biophysics Journal. 1967, 7 (5): 443-462.
63.
go back to reference Sarvas J: Basic Mathematical and Electromagnetic Concepts of the Biomagnetic Inverse Problem. Phys Med Biol. 1987, 32 (1): 11-22. 10.1088/0031-9155/32/1/004.PubMed Sarvas J: Basic Mathematical and Electromagnetic Concepts of the Biomagnetic Inverse Problem. Phys Med Biol. 1987, 32 (1): 11-22. 10.1088/0031-9155/32/1/004.PubMed
64.
go back to reference Barnard ACL, Duck IM, Lynn MS, Timlake WP: The Application of Electromagnetic Theory to Electrocardiography: II. Numerical Solution of the Integral Equations. Biophys J. 1967, 7 (5): 463-491.PubMedCentralPubMed Barnard ACL, Duck IM, Lynn MS, Timlake WP: The Application of Electromagnetic Theory to Electrocardiography: II. Numerical Solution of the Integral Equations. Biophys J. 1967, 7 (5): 463-491.PubMedCentralPubMed
65.
go back to reference Meijs JWH, Weier OW, Peters MJ, van Oosterom A: On the Numerical Accuracy of the Boundary Element Method. IEEE Transactions on Biomedical Engineering. 1989, 36 (10): 1038-1049. 10.1109/10.40805.PubMed Meijs JWH, Weier OW, Peters MJ, van Oosterom A: On the Numerical Accuracy of the Boundary Element Method. IEEE Transactions on Biomedical Engineering. 1989, 36 (10): 1038-1049. 10.1109/10.40805.PubMed
66.
go back to reference de Munck JC: A Linear Discretization of the Volume Conductor Boundary Integral Equation Using Analytically Integrated Elements. IEEE Transactions on Biomedical Engineering. 1992, 39 (9): 986-990. 10.1109/10.256433.PubMed de Munck JC: A Linear Discretization of the Volume Conductor Boundary Integral Equation Using Analytically Integrated Elements. IEEE Transactions on Biomedical Engineering. 1992, 39 (9): 986-990. 10.1109/10.256433.PubMed
67.
go back to reference Frijns J, de Snoo S, Schoonhoven R: Improving teh accuracy of the boundary method by the use of second-order interpolation functions. IEEE Transactions on Biomedical Engineering. 2000, 47: 1336-1346. 10.1109/10.871407.PubMed Frijns J, de Snoo S, Schoonhoven R: Improving teh accuracy of the boundary method by the use of second-order interpolation functions. IEEE Transactions on Biomedical Engineering. 2000, 47: 1336-1346. 10.1109/10.871407.PubMed
68.
go back to reference Gençer NG, Tanzer I: Forward problem solution of electromagnetic source imaging using a new BEM formulation with higher-order elements. Physics in Medicine and Biology. 1999, 44: 2275-2287. 10.1088/0031-9155/44/4/009.PubMed Gençer NG, Tanzer I: Forward problem solution of electromagnetic source imaging using a new BEM formulation with higher-order elements. Physics in Medicine and Biology. 1999, 44: 2275-2287. 10.1088/0031-9155/44/4/009.PubMed
69.
go back to reference Lynn M, Timlake W: The use of multiple deflations in the numerical solution of singular systems of equations with application to potential theory. SIAM Journal of Numerical Analysis. 1968, 5 (2): 303-322. 10.1137/0705027. Lynn M, Timlake W: The use of multiple deflations in the numerical solution of singular systems of equations with application to potential theory. SIAM Journal of Numerical Analysis. 1968, 5 (2): 303-322. 10.1137/0705027.
70.
go back to reference Hämäinen M, Sarvas J: Realistic Conductivity Geometry Model of the Human Head for Interpretation of Neuromagnetic Data. IEEE Transactions on Biomedical Engineering. 1989, 36 (2): 165-171. 10.1109/10.16463. Hämäinen M, Sarvas J: Realistic Conductivity Geometry Model of the Human Head for Interpretation of Neuromagnetic Data. IEEE Transactions on Biomedical Engineering. 1989, 36 (2): 165-171. 10.1109/10.16463.
71.
go back to reference Fuchs M, Drenckhahn R, Wischmann HA, Wagner M: An improved boundary element method for realistic volume-conductor modeling. IEEE Transactions on Biomedical Engineering. 1998, 45 (8): 980-997. 10.1109/10.704867.PubMed Fuchs M, Drenckhahn R, Wischmann HA, Wagner M: An improved boundary element method for realistic volume-conductor modeling. IEEE Transactions on Biomedical Engineering. 1998, 45 (8): 980-997. 10.1109/10.704867.PubMed
72.
go back to reference Gençer N, Akalin-Acar Z: Use of the isolated problem approach for multi-compartment BEM models of electro-magnetic source imaging. Physics in medicine and biology. 2005, 50: 3007-3022. 10.1088/0031-9155/50/13/003.PubMed Gençer N, Akalin-Acar Z: Use of the isolated problem approach for multi-compartment BEM models of electro-magnetic source imaging. Physics in medicine and biology. 2005, 50: 3007-3022. 10.1088/0031-9155/50/13/003.PubMed
73.
go back to reference Akalin-Acar Z, Gençer N: An advanced boundary element method BEM implementation for the forward problem of electromagnetic source imaging. Physics in Medicine and Biology. 2004, 49: 5011-5028. 10.1088/0031-9155/49/21/012.PubMed Akalin-Acar Z, Gençer N: An advanced boundary element method BEM implementation for the forward problem of electromagnetic source imaging. Physics in Medicine and Biology. 2004, 49: 5011-5028. 10.1088/0031-9155/49/21/012.PubMed
74.
go back to reference Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T: A common formalism for the integral formulations of the forward EEG problem. IEEE Transactions on medical imaging. 2005, 24: 12-28. 10.1109/TMI.2004.837363.PubMed Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T: A common formalism for the integral formulations of the forward EEG problem. IEEE Transactions on medical imaging. 2005, 24: 12-28. 10.1109/TMI.2004.837363.PubMed
75.
go back to reference Kybic J, Clerc M, Faugeras O, Keriven R, Papadopoulo T: Fast multipole acceleration of the MEG/EEG boundary element method. Physics in Medicine and Biology. 2005, 50: 4695-4710. 10.1088/0031-9155/50/19/018.PubMed Kybic J, Clerc M, Faugeras O, Keriven R, Papadopoulo T: Fast multipole acceleration of the MEG/EEG boundary element method. Physics in Medicine and Biology. 2005, 50: 4695-4710. 10.1088/0031-9155/50/19/018.PubMed
76.
go back to reference Kybic J, Clerc M, Faugeras O, Keriven R, Papadopoulo T: Generalized head models for MEG/EEG: boundary element method beyond nested models. Physics in Medicine and Biology. 2006, 51: 1333-1346. 10.1088/0031-9155/51/5/021.PubMed Kybic J, Clerc M, Faugeras O, Keriven R, Papadopoulo T: Generalized head models for MEG/EEG: boundary element method beyond nested models. Physics in Medicine and Biology. 2006, 51: 1333-1346. 10.1088/0031-9155/51/5/021.PubMed
77.
go back to reference Johnson CR: Numerical methods for bio-electric field problems. The biomedical engineering handbook. Edited by: Bronzino JD. 1995, CRC press, IEEE press Johnson CR: Numerical methods for bio-electric field problems. The biomedical engineering handbook. Edited by: Bronzino JD. 1995, CRC press, IEEE press
78.
go back to reference Schimpf P, Ramon C, Haueisen J: Dipole models for the EEG and MEG. IEEE Transactions on Biomedical Engineering. 2002, 49 (5): 409-418. 10.1109/10.995679.PubMed Schimpf P, Ramon C, Haueisen J: Dipole models for the EEG and MEG. IEEE Transactions on Biomedical Engineering. 2002, 49 (5): 409-418. 10.1109/10.995679.PubMed
79.
go back to reference Wolters C, Kuhn M, Anwander A, Reitzinger S: A parallel algebraic multigrid solver for finite element method based source localization in the human brain. Computing and Visualization in Science. 2002, 5: 165-177. 10.1007/s00791-002-0098-0. Wolters C, Kuhn M, Anwander A, Reitzinger S: A parallel algebraic multigrid solver for finite element method based source localization in the human brain. Computing and Visualization in Science. 2002, 5: 165-177. 10.1007/s00791-002-0098-0.
80.
go back to reference He B, Yao D, Lian J, Wu D: An Equivalent Current Source Model and Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical Activity. IEEE Transactions on Biomedical Engineering. 2002, 49 (4): 277-288. 10.1109/10.991155.PubMed He B, Yao D, Lian J, Wu D: An Equivalent Current Source Model and Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical Activity. IEEE Transactions on Biomedical Engineering. 2002, 49 (4): 277-288. 10.1109/10.991155.PubMed
81.
go back to reference Muscat J, Grech R, Camilleri K, Fabri S, James C: An Improvement in EEG Forward Model Computational Efficiency. Proceedings of 2nd International Conference on Advances in Medical Signal and Information Processing. 2004, 99-103. Muscat J, Grech R, Camilleri K, Fabri S, James C: An Improvement in EEG Forward Model Computational Efficiency. Proceedings of 2nd International Conference on Advances in Medical Signal and Information Processing. 2004, 99-103.
82.
go back to reference Datta BN: Numerical Linear Algebra and Applications. 1995, Brooks/Cole Publishing Company Datta BN: Numerical Linear Algebra and Applications. 1995, Brooks/Cole Publishing Company
83.
go back to reference Wolters C, Grasedyck L, Hackbusch W: Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Inverse Problems. 2004, 20 (4): 1099-1116. 10.1088/0266-5611/20/4/007. Wolters C, Grasedyck L, Hackbusch W: Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Inverse Problems. 2004, 20 (4): 1099-1116. 10.1088/0266-5611/20/4/007.
84.
go back to reference Wolters C, Hartmann U, Koch M, Kruggel F: New Methods for Improved and Accelerated FE-volume conductor modelling in EEG/MEG-Source Localisation. Proceedings of 4th Symposium on Computer methods in Biomechanics and Biomedical Engineering 99. 489-494. Wolters C, Hartmann U, Koch M, Kruggel F: New Methods for Improved and Accelerated FE-volume conductor modelling in EEG/MEG-Source Localisation. Proceedings of 4th Symposium on Computer methods in Biomechanics and Biomedical Engineering 99. 489-494.
86.
go back to reference Mitchell A, Griffiths D: The Finite Difference Method in Partial Differential Equations. 1980, John Willey and Sons Mitchell A, Griffiths D: The Finite Difference Method in Partial Differential Equations. 1980, John Willey and Sons
87.
go back to reference Witwer JG, Trezek GJ, Jewett DL: The Effect of Media Inhomogeneities Upon Intracranial Electrical Fields. IEEE Transactions on Biomedical Engineering. 1972, BME-19 (5): 352-362. 10.1109/TBME.1972.324138. Witwer JG, Trezek GJ, Jewett DL: The Effect of Media Inhomogeneities Upon Intracranial Electrical Fields. IEEE Transactions on Biomedical Engineering. 1972, BME-19 (5): 352-362. 10.1109/TBME.1972.324138.
88.
go back to reference Marino F, Halgren E, Badier JM, Gee M, Nenev V: A Finite Difference Model of Electric Field Propagation in the Human Head: Implementation and Validation. Proceedings of the 19th Annual Northeast Bioengineering Conference. 1993, 82-85. Marino F, Halgren E, Badier JM, Gee M, Nenev V: A Finite Difference Model of Electric Field Propagation in the Human Head: Implementation and Validation. Proceedings of the 19th Annual Northeast Bioengineering Conference. 1993, 82-85.
89.
go back to reference Laarne P, H E, Hyttinen J, Suihko V, Malmivuo J: Validation of a Detailed Computer Model for the Electric Fields in the Brain. Journal of Medical Engineering and Technology. 1995, 19 (2–3): 84-87.PubMed Laarne P, H E, Hyttinen J, Suihko V, Malmivuo J: Validation of a Detailed Computer Model for the Electric Fields in the Brain. Journal of Medical Engineering and Technology. 1995, 19 (2–3): 84-87.PubMed
90.
go back to reference Lemieux L, McBride A, Hand JW: Calculation of Electrical Potentials on the surface of a Realistic Head Model by Finite Differences. Physics in Medicine and Biology. 1996, 41: 1079-1091. 10.1088/0031-9155/41/7/001.PubMed Lemieux L, McBride A, Hand JW: Calculation of Electrical Potentials on the surface of a Realistic Head Model by Finite Differences. Physics in Medicine and Biology. 1996, 41: 1079-1091. 10.1088/0031-9155/41/7/001.PubMed
91.
go back to reference Laarne P, Hyttinen J, Dodel S, Malmivuo J, Eskola H: Accuracy of two dipolar inverse algorithms applying reciprocity for forward calculation. Computers and Biomedical Research. 2000, 33 (3): 172-185. 10.1006/cbmr.1999.1538.PubMed Laarne P, Hyttinen J, Dodel S, Malmivuo J, Eskola H: Accuracy of two dipolar inverse algorithms applying reciprocity for forward calculation. Computers and Biomedical Research. 2000, 33 (3): 172-185. 10.1006/cbmr.1999.1538.PubMed
92.
go back to reference Laarne P, Tenhunen-Eskelinen M, J H, Eskola H: Effect of EEG electrodes density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topography. 2000, 12 (4): 249-254. 10.1023/A:1023422504025.PubMed Laarne P, Tenhunen-Eskelinen M, J H, Eskola H: Effect of EEG electrodes density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topography. 2000, 12 (4): 249-254. 10.1023/A:1023422504025.PubMed
93.
go back to reference Neilson LA, Kovalyov M, Koles ZJ: A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model. Clin Neurophysiol. 2005, 116 (10): 2302-2314. 10.1016/j.clinph.2005.07.010.PubMed Neilson LA, Kovalyov M, Koles ZJ: A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model. Clin Neurophysiol. 2005, 116 (10): 2302-2314. 10.1016/j.clinph.2005.07.010.PubMed
94.
go back to reference Hallez H, Vanrumste B, Van Hese P, D'Asseler Y, Lemahieu I, Van de Walle R: A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Physics in Medicine and Biology. 2005, 50: 3787-3806. 10.1088/0031-9155/50/16/009.PubMed Hallez H, Vanrumste B, Van Hese P, D'Asseler Y, Lemahieu I, Van de Walle R: A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Physics in Medicine and Biology. 2005, 50: 3787-3806. 10.1088/0031-9155/50/16/009.PubMed
95.
go back to reference Hinchey F: Vectors and Tensors for Engineers and Scientists. 1976, Wiley, John & Sons, Incorporated, [ISBN: 0470151943] Hinchey F: Vectors and Tensors for Engineers and Scientists. 1976, Wiley, John & Sons, Incorporated, [ISBN: 0470151943]
96.
go back to reference Saleheen H, Kwong T: New Finite Difference Formulations for General Inhomogeneous Anisotropic Bioelectric Problems. IEEE Transactions on Biomedical Engineering. 1997, 44 (9): 800-809. 10.1109/10.623049.PubMed Saleheen H, Kwong T: New Finite Difference Formulations for General Inhomogeneous Anisotropic Bioelectric Problems. IEEE Transactions on Biomedical Engineering. 1997, 44 (9): 800-809. 10.1109/10.623049.PubMed
97.
go back to reference Panizo M, Castellanos A, Rivas J: Finite-difference operators in inhomogeneouw anisotropic media. Journal of Applied Physics. 1977, 48 (3): 1054-1057. 10.1063/1.323779. Panizo M, Castellanos A, Rivas J: Finite-difference operators in inhomogeneouw anisotropic media. Journal of Applied Physics. 1977, 48 (3): 1054-1057. 10.1063/1.323779.
98.
go back to reference Briggs WL: A multigrid tutorial. 1987, SIAM Briggs WL: A multigrid tutorial. 1987, SIAM
99.
go back to reference Hoekema R, Venner K, Struijk J, Holsheimer J: Multigrid solution of the potential field in modeling electrical nerve stimulation. Computers and Biomedical Research. 1998, 31: 348-362. 10.1006/cbmr.1998.1486.PubMed Hoekema R, Venner K, Struijk J, Holsheimer J: Multigrid solution of the potential field in modeling electrical nerve stimulation. Computers and Biomedical Research. 1998, 31: 348-362. 10.1006/cbmr.1998.1486.PubMed
100.
go back to reference Saad Y: Iterative methods for sparse linear systems. 2003, Philadelphia: SIAM, 2 Saad Y: Iterative methods for sparse linear systems. 2003, Philadelphia: SIAM, 2
101.
go back to reference Thompson JF, Soni BK, Weatherrill NP: Handbook of grid generation. 1998, CRC Press Thompson JF, Soni BK, Weatherrill NP: Handbook of grid generation. 1998, CRC Press
102.
go back to reference Ottosen N, Peterson H: Introduction to the finite element method. 1992, Prentice hall Ottosen N, Peterson H: Introduction to the finite element method. 1992, Prentice hall
103.
go back to reference Rush S, Driscoll DA: EEG Electrode Sensitivity – An Application of Reciprocity. IEEE Trans Biomed Eng. 1969, 16 (1): 15-22.PubMed Rush S, Driscoll DA: EEG Electrode Sensitivity – An Application of Reciprocity. IEEE Trans Biomed Eng. 1969, 16 (1): 15-22.PubMed
104.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C. 1995, Cambridge University Press Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C. 1995, Cambridge University Press
105.
go back to reference Finke S, Gulrajani R, Gotman J: Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem of Electroencephalography. IEEE Transactions on Biomedical Engineering. 2003, 50 (6): 657-666. 10.1109/TBME.2003.812198.PubMed Finke S, Gulrajani R, Gotman J: Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem of Electroencephalography. IEEE Transactions on Biomedical Engineering. 2003, 50 (6): 657-666. 10.1109/TBME.2003.812198.PubMed
106.
go back to reference Weinstein D, Zhukov L, Johnson C: Lead-field bases for electroencephalography source imaging. Annals of biomedical engineering. 2000, 28: 1059-1065. 10.1114/1.1310220.PubMed Weinstein D, Zhukov L, Johnson C: Lead-field bases for electroencephalography source imaging. Annals of biomedical engineering. 2000, 28: 1059-1065. 10.1114/1.1310220.PubMed
107.
go back to reference Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topography. 2001, 14 (2): 83-92. 10.1023/A:1012909511833.PubMed Vanrumste B, Van Hoey G, Van de Walle R, D'Havé M, Lemahieu I, Boon P: The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topography. 2001, 14 (2): 83-92. 10.1023/A:1012909511833.PubMed
108.
go back to reference Berman A, Plemmons R: Nonnegative Matrices in the Mathematical Sciences. No 9 in Classics in Applied Mathematics. 1994, SIAM Berman A, Plemmons R: Nonnegative Matrices in the Mathematical Sciences. No 9 in Classics in Applied Mathematics. 1994, SIAM
109.
go back to reference Ruge JW, Stüben K: Algebraic multigrid (AMG). Multigrid Methods, Volume 3 of Frontiers in Applied Mathematics. Edited by: McCormick SF. 1987, SIAM, 73-130. Ruge JW, Stüben K: Algebraic multigrid (AMG). Multigrid Methods, Volume 3 of Frontiers in Applied Mathematics. Edited by: McCormick SF. 1987, SIAM, 73-130.
110.
go back to reference Briggs WL, Henson VE, McCormick SF: A Multigrid Tutorial. 2000, SIAM, 2 Briggs WL, Henson VE, McCormick SF: A Multigrid Tutorial. 2000, SIAM, 2
111.
go back to reference Mohr M, Vanrumste B: Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis. Medical & Biological Engineering & Computing. 2003, 41: 75-84. 10.1007/BF02343542. Mohr M, Vanrumste B: Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis. Medical & Biological Engineering & Computing. 2003, 41: 75-84. 10.1007/BF02343542.
112.
go back to reference Oh SH, Han JY, Lee SY, Cho MH, Lee BI, Woo EJ: Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT). Magnetic Resonance in Medicine. 2003, 50: 875-878. 10.1002/mrm.10588.PubMed Oh SH, Han JY, Lee SY, Cho MH, Lee BI, Woo EJ: Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT). Magnetic Resonance in Medicine. 2003, 50: 875-878. 10.1002/mrm.10588.PubMed
113.
go back to reference Seo JK, Pyo PC, Chan Hyun, Kwon O, Woo EJ: Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Physics in Medicine and biology. 2004, 49: 4371-4382. 10.1088/0031-9155/49/18/012.PubMed Seo JK, Pyo PC, Chan Hyun, Kwon O, Woo EJ: Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Physics in Medicine and biology. 2004, 49: 4371-4382. 10.1088/0031-9155/49/18/012.PubMed
114.
go back to reference Seo JK, Kwon O, Woo EJ: Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging. Journal of Physics: Conference Series. 2005, 12: 140-155. 10.1088/1742-6596/12/1/014. Seo JK, Kwon O, Woo EJ: Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging. Journal of Physics: Conference Series. 2005, 12: 140-155. 10.1088/1742-6596/12/1/014.
115.
go back to reference Ozdemir M, Eyuboglu M, Ozbek O: Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Physics in Medicine and Biology. 2004, 49: 4765-4783. 10.1088/0031-9155/49/20/008.PubMed Ozdemir M, Eyuboglu M, Ozbek O: Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Physics in Medicine and Biology. 2004, 49: 4765-4783. 10.1088/0031-9155/49/20/008.PubMed
116.
go back to reference Babiloni F, Mattia D, Babiloni C, Astolfi L, Salinari S, Basilisco A, Rossini PM, Marciani MG, Cincotti F: Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn Reson Imaging. 2004, 22 (10): 1471-1476. 10.1016/j.mri.2004.10.007.PubMed Babiloni F, Mattia D, Babiloni C, Astolfi L, Salinari S, Basilisco A, Rossini PM, Marciani MG, Cincotti F: Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn Reson Imaging. 2004, 22 (10): 1471-1476. 10.1016/j.mri.2004.10.007.PubMed
117.
go back to reference Leahy RM, Mosher J, Spencer MC, Huang MX, Lewine J: A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and clinical Neurophysiology. 1998, 107 (2): 159-173. 10.1016/S0013-4694(98)00057-1.PubMed Leahy RM, Mosher J, Spencer MC, Huang MX, Lewine J: A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and clinical Neurophysiology. 1998, 107 (2): 159-173. 10.1016/S0013-4694(98)00057-1.PubMed
118.
go back to reference Chang N, Gulrajani R, Gotman J: Dipole localization using simulated intracerebral EEG. Clin Neurophysiol. 2005, 116 (11): 2707-2716. 10.1016/j.clinph.2005.07.002.PubMed Chang N, Gulrajani R, Gotman J: Dipole localization using simulated intracerebral EEG. Clin Neurophysiol. 2005, 116 (11): 2707-2716. 10.1016/j.clinph.2005.07.002.PubMed
119.
go back to reference De Clercq W, Vergult A, Vanrumste B, Paesschen WV, Huffel SV: Canonical correlation analysis applied to remove muscle artifacts from the electroenceaphalogram. IEEE Transactions on Biomedical Engineering. 2006, 53 (12): 2583-2587. 10.1109/TBME.2006.879459.PubMed De Clercq W, Vergult A, Vanrumste B, Paesschen WV, Huffel SV: Canonical correlation analysis applied to remove muscle artifacts from the electroenceaphalogram. IEEE Transactions on Biomedical Engineering. 2006, 53 (12): 2583-2587. 10.1109/TBME.2006.879459.PubMed
120.
go back to reference Zhukov L, Weinstein D, Johnson C: Independent component analysis for EEG source localization. Engineering in Medicine and Biology Magazine. 2000, IEEE, 19 (3): 87-96. 10.1109/51.844386. Zhukov L, Weinstein D, Johnson C: Independent component analysis for EEG source localization. Engineering in Medicine and Biology Magazine. 2000, IEEE, 19 (3): 87-96. 10.1109/51.844386.
121.
go back to reference Makeig S, Debener S, Onton J, Delorme A: Mining event-related brain dynamics. Trends in Cognitive Science. 2004, 8 (5): 204-210. 10.1016/j.tics.2004.03.008. Makeig S, Debener S, Onton J, Delorme A: Mining event-related brain dynamics. Trends in Cognitive Science. 2004, 8 (5): 204-210. 10.1016/j.tics.2004.03.008.
122.
go back to reference Astolfi L, Cincotti F, Mattia D, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Marciani M, Babiloni F: Estimation of the cortical connectivity patterns during the intention of limb movements. Engineering in Medicine and Biology Magazine. 2006, IEEE, 25 (4): 32-38. 10.1109/MEMB.2006.1657785. Astolfi L, Cincotti F, Mattia D, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Marciani M, Babiloni F: Estimation of the cortical connectivity patterns during the intention of limb movements. Engineering in Medicine and Biology Magazine. 2006, IEEE, 25 (4): 32-38. 10.1109/MEMB.2006.1657785.
123.
go back to reference Gotman J, Kobayashi E, Bagshaw AP, Bnar CG, Dubeau F: Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006, 23 (6): 906-920. 10.1002/jmri.20577.PubMed Gotman J, Kobayashi E, Bagshaw AP, Bnar CG, Dubeau F: Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006, 23 (6): 906-920. 10.1002/jmri.20577.PubMed
124.
go back to reference Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J: EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage. 2006, 30 (4): 1161-1170. 10.1016/j.neuroimage.2005.11.008.PubMed Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J: EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage. 2006, 30 (4): 1161-1170. 10.1016/j.neuroimage.2005.11.008.PubMed
125.
go back to reference Pruis GW, Gilding BH, Peters MJ: A comparison of different numerical methods for solving the forward problem in EEG and MEG. Physiol Meas. 1993, 14 (Suppl 4A): A1-A9. 10.1088/0967-3334/14/4A/001.PubMed Pruis GW, Gilding BH, Peters MJ: A comparison of different numerical methods for solving the forward problem in EEG and MEG. Physiol Meas. 1993, 14 (Suppl 4A): A1-A9. 10.1088/0967-3334/14/4A/001.PubMed
126.
go back to reference Babuska I, Guo B: The h-p version of the finite element method for problems with nonhomogeneous essential boundary condition. Computer Methods in Applied Mechanics and Engineering. 1989, 74: 1-28. 10.1016/0045-7825(89)90083-2. Babuska I, Guo B: The h-p version of the finite element method for problems with nonhomogeneous essential boundary condition. Computer Methods in Applied Mechanics and Engineering. 1989, 74: 1-28. 10.1016/0045-7825(89)90083-2.
127.
go back to reference Melenk J, Schwab C: hp-FEM for reaction-diffusion equations I: robust exponential convergence. SIAM journal on numerical analysis. 1998, 35: 1520-1557. 10.1137/S0036142997317602. Melenk J, Schwab C: hp-FEM for reaction-diffusion equations I: robust exponential convergence. SIAM journal on numerical analysis. 1998, 35: 1520-1557. 10.1137/S0036142997317602.
128.
go back to reference Vejchodsky T, Solin P, Zitka M: Modular hp-FEM System HERMES and its application to the Maxwell Equations. Mathematical Computations and Simulations. 2005, Vejchodsky T, Solin P, Zitka M: Modular hp-FEM System HERMES and its application to the Maxwell Equations. Mathematical Computations and Simulations. 2005,
129.
go back to reference Wolters C, Köstler H, Möller C, Härdtlein J, Anwander A: Numerical approaches for dipole modeling in finite element method based source analysis. International Congres Series. 2007 Wolters C, Köstler H, Möller C, Härdtlein J, Anwander A: Numerical approaches for dipole modeling in finite element method based source analysis. International Congres Series. 2007
Metadata
Title
Review on solving the forward problem in EEG source analysis
Authors
Hans Hallez
Bart Vanrumste
Roberta Grech
Joseph Muscat
Wim De Clercq
Anneleen Vergult
Yves D'Asseler
Kenneth P Camilleri
Simon G Fabri
Sabine Van Huffel
Ignace Lemahieu
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-46

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue