Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Research

Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system

Authors: Jill Campbell Stewart, Shih-Ching Yeh, Younbo Jung, Hyunjin Yoon, Maureen Whitford, Shu-Ya Chen, Lei Li, Margaret McLaughlin, Albert Rizzo, Carolee J Winstein

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

Rehabilitation programs designed to develop skill in upper extremity (UE) function after stroke require progressive practice that engage and challenge the learner. Virtual realty (VR) provides a unique environment where the presentation of stimuli can be controlled systematically for optimal challenge by adapting task difficulty as performance improves. We describe four VR tasks that were developed and tested to improve arm and hand movement skills for individuals with hemiparesis.

Methods

Two participants with chronic post-stroke paresis and different levels of motor severity attended 12 training sessions lasting 1 to 2 hours each over a 3-week period. Behavior measures and questionnaires were administered pre-, mid-, and post-training.

Results

Both participants improved VR task performance across sessions. The less impaired participant averaged more time on task, practiced a greater number of blocks per session, and progressed at a faster rate over sessions than the more impaired participant. Impairment level did not change but both participants improved functional ability after training. The less impaired participant increased the number of blocks moved on the Box & Blocks test while the more impaired participant achieved 4 more items on the Functional Test of the Hemiparetic UE.

Conclusion

Two participants with differing motor severity were able to engage in VR based practice and improve performance over 12 training sessions. We were able to successfully provide individualized, progressive practice based on each participant's level of movement ability and rate of performance improvement.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schmidt RA, Lee TD: Motor control and learning: a behavioral emphasis. 4th edition. Champaign, Ill, Human Kinetics; 2005. Schmidt RA, Lee TD: Motor control and learning: a behavioral emphasis. 4th edition. Champaign, Ill, Human Kinetics; 2005.
2.
go back to reference Gordon JG: Assumptions underlying physical therapy intervention: Theoretical and historical perspectives. In Movement Science. Foundations for Physical Therapy in Rehabilitation. 2nd edition. Edited by: Carr J, Shepard R. Gaithersburg, MD, Aspen Publishers; 2000:1-30. Gordon JG: Assumptions underlying physical therapy intervention: Theoretical and historical perspectives. In Movement Science. Foundations for Physical Therapy in Rehabilitation. 2nd edition. Edited by: Carr J, Shepard R. Gaithersburg, MD, Aspen Publishers; 2000:1-30.
3.
go back to reference Holden MK: Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 2005, 8: 187-211. 10.1089/cpb.2005.8.187CrossRefPubMed Holden MK: Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 2005, 8: 187-211. 10.1089/cpb.2005.8.187CrossRefPubMed
4.
go back to reference Weiss PL, Katz N: The potential of virtual reality for rehabilitation. J Rehabil Res Dev 2004, 41: vii-x.PubMed Weiss PL, Katz N: The potential of virtual reality for rehabilitation. J Rehabil Res Dev 2004, 41: vii-x.PubMed
5.
go back to reference Holden M, Todorov E, Callahan J, Bizzi E: Virtual environment training improves motor performance in two patients with stroke: case report. Neurol Rep 1999, 23: 57-67.CrossRef Holden M, Todorov E, Callahan J, Bizzi E: Virtual environment training improves motor performance in two patients with stroke: case report. Neurol Rep 1999, 23: 57-67.CrossRef
6.
go back to reference Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed
7.
go back to reference You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY: Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke. An experimenter-blind randomized study. Stroke 2005, 36: 1166-1171. 10.1161/01.STR.0000162715.43417.91CrossRefPubMed You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY: Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke. An experimenter-blind randomized study. Stroke 2005, 36: 1166-1171. 10.1161/01.STR.0000162715.43417.91CrossRefPubMed
8.
go back to reference Deutsch JE, Latonio J, Burdea G, Boian R: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 2001, 10: 416-430. 10.1162/1054746011470262CrossRef Deutsch JE, Latonio J, Burdea G, Boian R: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 2001, 10: 416-430. 10.1162/1054746011470262CrossRef
9.
go back to reference Parsons TD, Larson P, Kratz K, Thiebaux M, Bluestein B, Buckwalter JG, Rizzo AA: Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia 2004, 42: 555-562. 10.1016/j.neuropsychologia.2003.08.014CrossRefPubMed Parsons TD, Larson P, Kratz K, Thiebaux M, Bluestein B, Buckwalter JG, Rizzo AA: Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia 2004, 42: 555-562. 10.1016/j.neuropsychologia.2003.08.014CrossRefPubMed
10.
go back to reference McGee JS, van der Zaag C, Rizzo AA, Buckwalter JG, Neumann U, Thiebaux M: Issues for the assessment of visuospatial skills in older adults using virtual environment technology. CyberPsychol Behav 2000, 3: 469-482. 10.1089/10949310050078931CrossRef McGee JS, van der Zaag C, Rizzo AA, Buckwalter JG, Neumann U, Thiebaux M: Issues for the assessment of visuospatial skills in older adults using virtual environment technology. CyberPsychol Behav 2000, 3: 469-482. 10.1089/10949310050078931CrossRef
11.
go back to reference van Rooyen AD, Rizzo AA, Buckwalter JG, Larson PJ, Kratz KE, Thiebaux M: The virtual spatial rotation test: a study of psychometric properties. J Int Neuropsychol Soc 2000, 6: 114. van Rooyen AD, Rizzo AA, Buckwalter JG, Larson PJ, Kratz KE, Thiebaux M: The virtual spatial rotation test: a study of psychometric properties. J Int Neuropsychol Soc 2000, 6: 114.
12.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehab Med 1975,7(1):13-31. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehab Med 1975,7(1):13-31.
13.
go back to reference Wilson DJ, Baker LL, Craddock JA: Functional test for the hemiparetic upper extremity. Am J Occup Ther 1984, 38: 159-164.CrossRefPubMed Wilson DJ, Baker LL, Craddock JA: Functional test for the hemiparetic upper extremity. Am J Occup Ther 1984, 38: 159-164.CrossRefPubMed
14.
go back to reference Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L: Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil 1994, 75: 751-755.PubMed Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L: Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil 1994, 75: 751-755.PubMed
15.
go back to reference Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ: The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 1999, 30: 2131-2140.CrossRefPubMed Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ: The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 1999, 30: 2131-2140.CrossRefPubMed
16.
go back to reference Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267. 10.1177/1545968306286914CrossRefPubMed Merians AS, Poizner H, Boian R, Burdea G, Adamovich S: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006, 20: 252-267. 10.1177/1545968306286914CrossRefPubMed
17.
go back to reference Holden MK, Dyar T, Bizzi E, Schwamm L, Daya-Cimadoro L: Telerehabilitation for motor retraining in patients with stroke. J Neural Phys Ther 2005, 29: 200.CrossRef Holden MK, Dyar T, Bizzi E, Schwamm L, Daya-Cimadoro L: Telerehabilitation for motor retraining in patients with stroke. J Neural Phys Ther 2005, 29: 200.CrossRef
Metadata
Title
Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system
Authors
Jill Campbell Stewart
Shih-Ching Yeh
Younbo Jung
Hyunjin Yoon
Maureen Whitford
Shu-Ya Chen
Lei Li
Margaret McLaughlin
Albert Rizzo
Carolee J Winstein
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-21

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue