Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 4/2015

01-04-2015 | Retinal Disorders

Retinal vessel diameter measurements by spectral domain optical coherence tomography

Authors: Yanling Ouyang, Qing Shao, Dirk Scharf, Antonia M. Joussen, Florian M. Heussen

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 4/2015

Login to get access

Abstract

Purpose

To describe a spectral domain optical coherence (OCT)-assisted method of measuring retinal vessel diameters.

Methods

All Patients with an OCT circle scan centered at the optic nerve head using a Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) were retrospectively reviewed. Individual retinal vessels were identified on infrared reflectance (IR) images and given unique labels both on IR and spectral domain OCT (SD-OCT). Vessel width and vessel types obtained by IR were documented as ground truth. From OCT, measurements of each vessel, including horizontal vessel contour diameter, vertical vessel contour diameter, horizontal hyperreflective core diameter, and reflectance shadowing width, were assessed.

Results

A total of 220 vessels from 13 eyes of 12 patients were labeled, among which, 194 vessels (88 arteries and 65 veins confirmed from IR) larger than 40 microns were included in the study. The mean vessel width obtained from IR was 107.9 ± 36.1 microns. A mean vertical vessel contour diameter of 119.6 ± 29.9 microns and a mean horizontal vessel contour diameter of 124.1 ± 31.1 microns were measured by SD-OCT. Vertical vessel contour diameter did not differ from vessel width in all subgroup analysis. Horizontal vessel contour diameter was not significantly different from vessel width for arteries and had strong or very strong correlation with vessel width for veins.

Conclusion

In our study, vertical vessel contour diameter measured by current commercially available SD-OCT was consistent with vessel width obtained by IR with good reproducibility. This SD-OCT based method could potentially be used as a standard measurement procedure to evaluate retinal vessel diameters and their changes in ocular and systemic disorders.
Literature
1.
go back to reference Suzuki Y (1995) Direct measurement of retinal vessel diameter: comparison with microdensitometric methods based on fundus photographs. Surv Ophthalmol 39(Suppl 1):S57–65CrossRefPubMed Suzuki Y (1995) Direct measurement of retinal vessel diameter: comparison with microdensitometric methods based on fundus photographs. Surv Ophthalmol 39(Suppl 1):S57–65CrossRefPubMed
2.
go back to reference Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–603PubMed Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–603PubMed
3.
go back to reference Hanssen H, Siegrist M, Neidig M, Renner A, Birzele P, Siclovan A, Blume K, Lammel C, Haller B, Schmidt-Trucksäss A, Halle M (2012) Retinal vessel diameter, obesity and metabolic risk factors in school children (JuvenTUM 3). Atherosclerosis 221:242–8CrossRefPubMed Hanssen H, Siegrist M, Neidig M, Renner A, Birzele P, Siclovan A, Blume K, Lammel C, Haller B, Schmidt-Trucksäss A, Halle M (2012) Retinal vessel diameter, obesity and metabolic risk factors in school children (JuvenTUM 3). Atherosclerosis 221:242–8CrossRefPubMed
4.
5.
go back to reference Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis risk in communities study. Ophthalmology 106:2269–80CrossRefPubMed Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis risk in communities study. Ophthalmology 106:2269–80CrossRefPubMed
6.
go back to reference Wong TY, Klein R, Sharrett AR, Manolio TA, Hubbard LD, Marino EK, Kuller L, Burke G, Tracy RP, Polak JF, Gottdiener JS, Siscovick DS (2003) The prevalence and risk factors of retinal microvascular abnormalities in older persons: The Cardiovascular health study. Ophthalmology 110:658–66CrossRefPubMed Wong TY, Klein R, Sharrett AR, Manolio TA, Hubbard LD, Marino EK, Kuller L, Burke G, Tracy RP, Polak JF, Gottdiener JS, Siscovick DS (2003) The prevalence and risk factors of retinal microvascular abnormalities in older persons: The Cardiovascular health study. Ophthalmology 110:658–66CrossRefPubMed
7.
go back to reference Ikram MK, De Jong FJ, Van Dijk EJ, Prins ND, Hofman A, Breteler MMB, De Jong PTVM (2006) Retinal vessel diameters and cerebral small vessel disease: the Rotterdam scan study. Brain 129:182–8CrossRefPubMed Ikram MK, De Jong FJ, Van Dijk EJ, Prins ND, Hofman A, Breteler MMB, De Jong PTVM (2006) Retinal vessel diameters and cerebral small vessel disease: the Rotterdam scan study. Brain 129:182–8CrossRefPubMed
8.
go back to reference Ikram MK, de Jong FJ, Bos MJ, Vingerling JR, Hofman A, Koudstaal PJ, de Jong PTVM, Breteler MMB (2006) Retinal vessel diameters and risk of stroke: the Rotterdam Study. Neurology 66:1339–43CrossRefPubMed Ikram MK, de Jong FJ, Bos MJ, Vingerling JR, Hofman A, Koudstaal PJ, de Jong PTVM, Breteler MMB (2006) Retinal vessel diameters and risk of stroke: the Rotterdam Study. Neurology 66:1339–43CrossRefPubMed
9.
go back to reference Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, Villemagne V, Rowe CC, Macaulay SL, Szoeke C, Ellis K a, Ames D, Masters CL, Rainey-Smith S, Martins RN, AIBL Research Group (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233CrossRef Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, Villemagne V, Rowe CC, Macaulay SL, Szoeke C, Ellis K a, Ames D, Masters CL, Rainey-Smith S, Martins RN, AIBL Research Group (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233CrossRef
10.
go back to reference Liew G, Wang JJ, Mitchell P, Wong TY (2008) Retinal vascular imaging: a new tool in microvascular disease research. Circ Cardiovasc Imaging 1:156–61CrossRefPubMed Liew G, Wang JJ, Mitchell P, Wong TY (2008) Retinal vascular imaging: a new tool in microvascular disease research. Circ Cardiovasc Imaging 1:156–61CrossRefPubMed
11.
go back to reference Triantafyllou A, Doumas M, Anyfanti P, Gkaliagkousi E, Zabulis X, Petidis K, Gavriilaki E, Karamaounas P, Gkolias V, Pyrpasopoulou A, Haidich A-B, Zamboulis C, Douma S (2013) Divergent retinal vascular abnormalities in normotensive persons and patients with never-treated, masked, white coat hypertension. Am J Hypertens 26:318–25CrossRefPubMed Triantafyllou A, Doumas M, Anyfanti P, Gkaliagkousi E, Zabulis X, Petidis K, Gavriilaki E, Karamaounas P, Gkolias V, Pyrpasopoulou A, Haidich A-B, Zamboulis C, Douma S (2013) Divergent retinal vascular abnormalities in normotensive persons and patients with never-treated, masked, white coat hypertension. Am J Hypertens 26:318–25CrossRefPubMed
12.
go back to reference Wong TY, Knudtson MD, Klein R, Klein BEK, Meuer SM, Hubbard LD (2004) Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 111:1183–90CrossRefPubMed Wong TY, Knudtson MD, Klein R, Klein BEK, Meuer SM, Hubbard LD (2004) Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 111:1183–90CrossRefPubMed
13.
go back to reference Soliman W, Vinten M, Sander B, Soliman KAE-N, Yehya S, Rahman MSA, Larsen M (2008) Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol 86:365–71CrossRefPubMed Soliman W, Vinten M, Sander B, Soliman KAE-N, Yehya S, Rahman MSA, Larsen M (2008) Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol 86:365–71CrossRefPubMed
14.
go back to reference Fischer MD, Huber G, Feng Y, Tanimoto N, Mühlfriedel R, Beck SC, Tröger E, Kernstock C, Preising MN, Lorenz B, Hammes HP, Seeliger MW (2010) In vivo assessment of retinal vascular wall dimensions. Invest Ophthalmol Vis Sci 51:5254–9CrossRefPubMed Fischer MD, Huber G, Feng Y, Tanimoto N, Mühlfriedel R, Beck SC, Tröger E, Kernstock C, Preising MN, Lorenz B, Hammes HP, Seeliger MW (2010) In vivo assessment of retinal vascular wall dimensions. Invest Ophthalmol Vis Sci 51:5254–9CrossRefPubMed
15.
go back to reference Kotliar KE, Mücke B, Vilser W, Schilling R, Lanzl IM (2008) Effect of aging on retinal artery blood column diameter measured along the vessel axis. Invest Ophthalmol Vis Sci 49:2094–102CrossRefPubMed Kotliar KE, Mücke B, Vilser W, Schilling R, Lanzl IM (2008) Effect of aging on retinal artery blood column diameter measured along the vessel axis. Invest Ophthalmol Vis Sci 49:2094–102CrossRefPubMed
16.
go back to reference Ouyang Y, Keane PA, Sadda SR, Walsh AC (2010) Detection of cystoid macular edema with three-dimensional optical coherence tomography versus fluorescein angiography. Invest Ophthalmol Vis Sci 51:5213–8CrossRefPubMedCentralPubMed Ouyang Y, Keane PA, Sadda SR, Walsh AC (2010) Detection of cystoid macular edema with three-dimensional optical coherence tomography versus fluorescein angiography. Invest Ophthalmol Vis Sci 51:5213–8CrossRefPubMedCentralPubMed
17.
go back to reference Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2010) Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 13:064003CrossRef Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2010) Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 13:064003CrossRef
18.
go back to reference Konduru RK, Tan O, Nittala MG, Huang D, Sadda SR (2012) Reproducibility of retinal blood flow measurements derived from semi-automated Doppler OCT analysis. Ophthalmic Surg. Lasers Imaging 43:25–31CrossRef Konduru RK, Tan O, Nittala MG, Huang D, Sadda SR (2012) Reproducibility of retinal blood flow measurements derived from semi-automated Doppler OCT analysis. Ophthalmic Surg. Lasers Imaging 43:25–31CrossRef
19.
go back to reference Gorczynska I, Szkulmowski M, Grulkowski I, Szkulmowska A, Szlag D, Fujimoto JG, Kowalczyk A, Wojtkowski M (2010) Blood Flow Measurement and Slow Flow Detection in Retinal Vessels with Joint Spectral and Time Domain Method in Ultrahigh-speed OCT. SPIE 7550:75501Y–7 Gorczynska I, Szkulmowski M, Grulkowski I, Szkulmowska A, Szlag D, Fujimoto JG, Kowalczyk A, Wojtkowski M (2010) Blood Flow Measurement and Slow Flow Detection in Retinal Vessels with Joint Spectral and Time Domain Method in Ultrahigh-speed OCT. SPIE 7550:75501Y–7
20.
go back to reference Guimaraes P, Rodrigues P, Bernardes R, Serranho P (2012) 3D blood vessels segmentation from optical coherence tomography. Acta Ophthalmol 90 Guimaraes P, Rodrigues P, Bernardes R, Serranho P (2012) 3D blood vessels segmentation from optical coherence tomography. Acta Ophthalmol 90
21.
go back to reference Golzan SM, Avolio A, Graham SL (2011) Minimising retinal vessel artefacts in optical coherence tomography images. Comput Methods Programs Biomed 104:206–11CrossRefPubMed Golzan SM, Avolio A, Graham SL (2011) Minimising retinal vessel artefacts in optical coherence tomography images. Comput Methods Programs Biomed 104:206–11CrossRefPubMed
22.
go back to reference Pilch M, Wenner Y, Strohmayr E, Preising M, Friedburg C, Meyer Zu Bexten E, Lorenz B, Stieger K (2012) Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans. Biomed Opt Express 3:1478–91CrossRefPubMedCentralPubMed Pilch M, Wenner Y, Strohmayr E, Preising M, Friedburg C, Meyer Zu Bexten E, Lorenz B, Stieger K (2012) Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans. Biomed Opt Express 3:1478–91CrossRefPubMedCentralPubMed
23.
go back to reference Hu Z, Niemeijer M, Abràmoff MD, Garvin MK (2012) Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography. IEEE Trans Med Imaging 31:1900–11CrossRefPubMedCentralPubMed Hu Z, Niemeijer M, Abràmoff MD, Garvin MK (2012) Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography. IEEE Trans Med Imaging 31:1900–11CrossRefPubMedCentralPubMed
24.
go back to reference Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR (2013) Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology 120:2656–65CrossRefPubMed Ouyang Y, Heussen FM, Hariri A, Keane PA, Sadda SR (2013) Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology 120:2656–65CrossRefPubMed
25.
go back to reference Wong TY, Klein R, Klein BEK, Meuer SM, Hubbard LD (2003) Retinal vessel diameters and their associations with age and blood pressure. Invest Ophthalmol Vis Sci 44:4644–50CrossRefPubMed Wong TY, Klein R, Klein BEK, Meuer SM, Hubbard LD (2003) Retinal vessel diameters and their associations with age and blood pressure. Invest Ophthalmol Vis Sci 44:4644–50CrossRefPubMed
26.
go back to reference Weber J, Lamb D (1970) Statistics and Research in Physical Education. Mosby, St. Louis, pp 59–222 Weber J, Lamb D (1970) Statistics and Research in Physical Education. Mosby, St. Louis, pp 59–222
27.
go back to reference Chan YH (2003) Biostatistics 104: correlational analysis. Singapore Med J 44:614–9PubMed Chan YH (2003) Biostatistics 104: correlational analysis. Singapore Med J 44:614–9PubMed
28.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–74CrossRefPubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–74CrossRefPubMed
29.
go back to reference Ahmadabadi MN, Rooholamini F, Esfahani M, Karkhaneh R (2011) Association of Retinal Vascular Diameter and Vascular Branching Angle with Diabetic Retinopathy Stage, A Cross-Sectional Study. Iran J Ophthalmol 23:21–26 Ahmadabadi MN, Rooholamini F, Esfahani M, Karkhaneh R (2011) Association of Retinal Vascular Diameter and Vascular Branching Angle with Diabetic Retinopathy Stage, A Cross-Sectional Study. Iran J Ophthalmol 23:21–26
30.
go back to reference Lee SB, Uhm KB, Hong C (1998) Retinal vessel diameter in normal and primary open-angle glaucoma. Korean J Ophthalmol 12:51–9CrossRefPubMed Lee SB, Uhm KB, Hong C (1998) Retinal vessel diameter in normal and primary open-angle glaucoma. Korean J Ophthalmol 12:51–9CrossRefPubMed
31.
go back to reference Xu X (2012) Automated delineation and quantitative analysis of blood vessels in retinal fundus image. University of Iowa Xu X (2012) Automated delineation and quantitative analysis of blood vessels in retinal fundus image. University of Iowa
32.
go back to reference Hogan MJ, Feeney L (1963) The ultrastructure of the retinal blood vessels. I. The large vessels. J Ultrastruct Res 39:10–28CrossRefPubMed Hogan MJ, Feeney L (1963) The ultrastructure of the retinal blood vessels. I. The large vessels. J Ultrastruct Res 39:10–28CrossRefPubMed
33.
go back to reference Besharse J, Bok D (Eds.) (2011) The Retina and its Disorders. Academic Press, p 657 Besharse J, Bok D (Eds.) (2011) The Retina and its Disorders. Academic Press, p 657
34.
go back to reference Goldenberg D, Shahar J, Loewenstein A, Goldstein M (2013) Diameters of retinal blood vessels in a healthy cohort as measured by spectral domain optical coherence tomography. Retina 33:1888–94CrossRefPubMed Goldenberg D, Shahar J, Loewenstein A, Goldstein M (2013) Diameters of retinal blood vessels in a healthy cohort as measured by spectral domain optical coherence tomography. Retina 33:1888–94CrossRefPubMed
35.
go back to reference Ouyang Y, Heussen FM, Mokwa N, Walsh AC, Durbin MK, Keane PA, Sanchez PJ, Ruiz-Garcia H, Sadda SR (2011) Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7019–26CrossRefPubMedCentralPubMed Ouyang Y, Heussen FM, Mokwa N, Walsh AC, Durbin MK, Keane PA, Sanchez PJ, Ruiz-Garcia H, Sadda SR (2011) Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7019–26CrossRefPubMedCentralPubMed
36.
go back to reference Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, Murakami T, Akagi-Kurashige Y, Miyamoto K, Yoshimura N (2013) Age- and hypertension-dependent changes in retinal vessel diameter and wall thickness: an optical coherence tomography study. Am J Ophthalmol 156:706–714, e2CrossRefPubMed Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, Murakami T, Akagi-Kurashige Y, Miyamoto K, Yoshimura N (2013) Age- and hypertension-dependent changes in retinal vessel diameter and wall thickness: an optical coherence tomography study. Am J Ophthalmol 156:706–714, e2CrossRefPubMed
37.
go back to reference Fabritius T, Makita S, Hong Y, Myllylä R, Yasuno Y (2009) Automated retinal shadow compensation of optical coherence tomography images. J Biomed Opt 14:010503CrossRefPubMed Fabritius T, Makita S, Hong Y, Myllylä R, Yasuno Y (2009) Automated retinal shadow compensation of optical coherence tomography images. J Biomed Opt 14:010503CrossRefPubMed
38.
go back to reference Knudtson M, Klein B, Klein R, Wong T, Hubbard L, Lee K, SM M, Bulla C (2004) Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle. Br J Ophthalmol 88:57–61CrossRefPubMedCentralPubMed Knudtson M, Klein B, Klein R, Wong T, Hubbard L, Lee K, SM M, Bulla C (2004) Variation associated with measurement of retinal vessel diameters at different points in the pulse cycle. Br J Ophthalmol 88:57–61CrossRefPubMedCentralPubMed
Metadata
Title
Retinal vessel diameter measurements by spectral domain optical coherence tomography
Authors
Yanling Ouyang
Qing Shao
Dirk Scharf
Antonia M. Joussen
Florian M. Heussen
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 4/2015
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2715-2

Other articles of this Issue 4/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 4/2015 Go to the issue