Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Research

Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice

Authors: Neal D Heuss, Mark J Pierson, Kim Ramil C Montaniel, Scott W McPherson, Ute Lehmann, Stacy A Hussong, Deborah A Ferrington, Walter C Low, Dale S Gregerson

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Background

Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms.

Methods

CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined.

Results

Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons.

Conclusions

The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater than the resident microglia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Voleti VB, Hubschman JP: Age-related eye disease. Maturitas. 2013, 75: 29-33. 10.1016/j.maturitas.2013.01.018.CrossRefPubMed Voleti VB, Hubschman JP: Age-related eye disease. Maturitas. 2013, 75: 29-33. 10.1016/j.maturitas.2013.01.018.CrossRefPubMed
2.
go back to reference Payne AJ, Kaja S, Sabates NR, Koulen P: A case for neuroprotection in ophthalmology: developments in translational research. Mo Med. 2013, 110: 429-436.PubMedCentralPubMed Payne AJ, Kaja S, Sabates NR, Koulen P: A case for neuroprotection in ophthalmology: developments in translational research. Mo Med. 2013, 110: 429-436.PubMedCentralPubMed
3.
go back to reference Chou CF, Cotch MF, Vitale S, Zhang X, Klein R, Friedman DS, Klein BE, Saaddine JB: Age-related eye diseases and visual impairment among U.S. adults. Am J Prev Med. 2013, 45: 29-35. 10.1016/j.amepre.2013.02.018.PubMedCentralCrossRefPubMed Chou CF, Cotch MF, Vitale S, Zhang X, Klein R, Friedman DS, Klein BE, Saaddine JB: Age-related eye diseases and visual impairment among U.S. adults. Am J Prev Med. 2013, 45: 29-35. 10.1016/j.amepre.2013.02.018.PubMedCentralCrossRefPubMed
5.
go back to reference Czeh M, Gressens P, Kaindl AM: The yin and yang of microglia. Dev Neurosci. 2011, 33: 199-209. 10.1159/000328989.CrossRefPubMed Czeh M, Gressens P, Kaindl AM: The yin and yang of microglia. Dev Neurosci. 2011, 33: 199-209. 10.1159/000328989.CrossRefPubMed
6.
go back to reference Amor S, Puentes F, Baker D, van der Valk P: Inflammation in neurodegenerative diseases. Immunology. 2010, 129: 154-169. 10.1111/j.1365-2567.2009.03225.x.PubMedCentralCrossRefPubMed Amor S, Puentes F, Baker D, van der Valk P: Inflammation in neurodegenerative diseases. Immunology. 2010, 129: 154-169. 10.1111/j.1365-2567.2009.03225.x.PubMedCentralCrossRefPubMed
7.
go back to reference Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S: Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014, 141: 302-313. 10.1111/imm.12163.PubMedCentralCrossRefPubMed Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S: Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014, 141: 302-313. 10.1111/imm.12163.PubMedCentralCrossRefPubMed
8.
9.
go back to reference Takahashi K, Rochford CD, Neumann H: Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005, 201: 647-657. 10.1084/jem.20041611.PubMedCentralCrossRefPubMed Takahashi K, Rochford CD, Neumann H: Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005, 201: 647-657. 10.1084/jem.20041611.PubMedCentralCrossRefPubMed
10.
go back to reference Sanders VM, Jones KJ: Role of immunity in recovery from a peripheral nerve injury. J Neuroimmune Pharmacol. 2006, 1: 11-19. 10.1007/s11481-005-9004-0.CrossRefPubMed Sanders VM, Jones KJ: Role of immunity in recovery from a peripheral nerve injury. J Neuroimmune Pharmacol. 2006, 1: 11-19. 10.1007/s11481-005-9004-0.CrossRefPubMed
11.
go back to reference Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D: Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol. 2007, 82: 277-296. 10.1016/S0074-7742(07)82015-0.CrossRefPubMed Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D: Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol. 2007, 82: 277-296. 10.1016/S0074-7742(07)82015-0.CrossRefPubMed
12.
go back to reference Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, et al: Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000, 21: 383-421. 10.1016/S0197-4580(00)00124-X.PubMedCentralCrossRefPubMed Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, et al: Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000, 21: 383-421. 10.1016/S0197-4580(00)00124-X.PubMedCentralCrossRefPubMed
13.
go back to reference Stagi M, Dittrich PS, Frank N, Iliev AI, Schwille P, Neumann H: Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci. 2005, 25: 352-362. 10.1523/JNEUROSCI.3887-04.2005.CrossRefPubMed Stagi M, Dittrich PS, Frank N, Iliev AI, Schwille P, Neumann H: Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci. 2005, 25: 352-362. 10.1523/JNEUROSCI.3887-04.2005.CrossRefPubMed
14.
go back to reference Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R, Aarabi B, Yuan J, Moskowitz MA: Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci. 2002, 22: 3504-3511.PubMed Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R, Aarabi B, Yuan J, Moskowitz MA: Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci. 2002, 22: 3504-3511.PubMed
15.
go back to reference Ju KR, Kim HS, Kim JH, Lee NY, Park CK: Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res. 2006, 1122: 209-221.CrossRefPubMed Ju KR, Kim HS, Kim JH, Lee NY, Park CK: Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res. 2006, 1122: 209-221.CrossRefPubMed
16.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8: 752-758. 10.1038/nn1472.CrossRefPubMed Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8: 752-758. 10.1038/nn1472.CrossRefPubMed
17.
go back to reference Lee JE, Liang KJ, Fariss RN, Wong WT: Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci. 2008, 49: 4169-4176. 10.1167/iovs.08-2076.PubMedCentralCrossRefPubMed Lee JE, Liang KJ, Fariss RN, Wong WT: Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci. 2008, 49: 4169-4176. 10.1167/iovs.08-2076.PubMedCentralCrossRefPubMed
18.
go back to reference Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT: Age-related alterations in the dynamic behavior of microglia. Aging Cell. 2011, 10: 263-276. 10.1111/j.1474-9726.2010.00660.x.PubMedCentralCrossRefPubMed Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT: Age-related alterations in the dynamic behavior of microglia. Aging Cell. 2011, 10: 263-276. 10.1111/j.1474-9726.2010.00660.x.PubMedCentralCrossRefPubMed
19.
go back to reference Blanch RJ, Ahmed Z, Berry M, Scott RA, Logan A: Animal models of retinal injury. Invest Ophthalmol Vis Sci. 2012, 53: 2913-2920. 10.1167/iovs.11-8564.CrossRefPubMed Blanch RJ, Ahmed Z, Berry M, Scott RA, Logan A: Animal models of retinal injury. Invest Ophthalmol Vis Sci. 2012, 53: 2913-2920. 10.1167/iovs.11-8564.CrossRefPubMed
20.
go back to reference Berry M, Ahmed Z, Lorber B, Douglas M, Logan A: Regeneration of axons in the visual system. Restor Neurol Neurosci. 2008, 26: 147-174.PubMed Berry M, Ahmed Z, Lorber B, Douglas M, Logan A: Regeneration of axons in the visual system. Restor Neurol Neurosci. 2008, 26: 147-174.PubMed
21.
go back to reference Lehmann U, Heuss ND, McPherson SW, Roehrich H, Gregerson DS: Dendritic cells are early responders to retinal injury. Neurobiol Dis. 2010, 40: 177-184. 10.1016/j.nbd.2010.05.022.PubMedCentralCrossRefPubMed Lehmann U, Heuss ND, McPherson SW, Roehrich H, Gregerson DS: Dendritic cells are early responders to retinal injury. Neurobiol Dis. 2010, 40: 177-184. 10.1016/j.nbd.2010.05.022.PubMedCentralCrossRefPubMed
22.
go back to reference Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M: Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci. 2001, 21: 4564-4571.PubMed Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M: Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci. 2001, 21: 4564-4571.PubMed
23.
go back to reference Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M: Neuroprotective autoimmunity: naturally occurring CD4 + CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A. 2002, 99: 15620-15625. 10.1073/pnas.232565399.PubMedCentralCrossRefPubMed Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M: Neuroprotective autoimmunity: naturally occurring CD4 + CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A. 2002, 99: 15620-15625. 10.1073/pnas.232565399.PubMedCentralCrossRefPubMed
24.
go back to reference Kipnis J, Avidan H, Caspi RR, Schwartz M: Dual effect of CD4 + CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc Natl Acad Sci U S A. 2004, 101 (Suppl 2): 14663-14669. 10.1073/pnas.0404842101.PubMedCentralCrossRefPubMed Kipnis J, Avidan H, Caspi RR, Schwartz M: Dual effect of CD4 + CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc Natl Acad Sci U S A. 2004, 101 (Suppl 2): 14663-14669. 10.1073/pnas.0404842101.PubMedCentralCrossRefPubMed
25.
go back to reference Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008, 28: 12085-12096. 10.1523/JNEUROSCI.3200-08.2008.PubMedCentralCrossRefPubMed Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008, 28: 12085-12096. 10.1523/JNEUROSCI.3200-08.2008.PubMedCentralCrossRefPubMed
26.
go back to reference Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA: In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity. 2002, 17: 211-220. 10.1016/S1074-7613(02)00365-5.PubMedCentralCrossRefPubMed Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA: In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity. 2002, 17: 211-220. 10.1016/S1074-7613(02)00365-5.PubMedCentralCrossRefPubMed
27.
go back to reference Li Y, Schlamp CL, Nickells RW: Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999, 40: 1004-1008.PubMed Li Y, Schlamp CL, Nickells RW: Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999, 40: 1004-1008.PubMed
28.
go back to reference McPherson SW, Heuss ND, Gregerson DS: Local ‘on-demand’ generation and function of antigen-specific foxp3+ regulatory T cells. J Immunol. 2013, 190: 4971-4981. 10.4049/jimmunol.1202625.PubMedCentralCrossRefPubMed McPherson SW, Heuss ND, Gregerson DS: Local ‘on-demand’ generation and function of antigen-specific foxp3+ regulatory T cells. J Immunol. 2013, 190: 4971-4981. 10.4049/jimmunol.1202625.PubMedCentralCrossRefPubMed
29.
go back to reference Heuss ND, Lehmann U, Norbury CC, McPherson SW, Gregerson DS: Local activation of dendritic cells alters the pathogenesis of autoimmune disease in the retina. J Immunol. 2012, 188: 1191-1200. 10.4049/jimmunol.1101621.PubMedCentralCrossRefPubMed Heuss ND, Lehmann U, Norbury CC, McPherson SW, Gregerson DS: Local activation of dendritic cells alters the pathogenesis of autoimmune disease in the retina. J Immunol. 2012, 188: 1191-1200. 10.4049/jimmunol.1101621.PubMedCentralCrossRefPubMed
30.
go back to reference Jeon CJ, Strettoi E, Masland RH: The major cell populations of the mouse retina. J Neurosci. 1998, 18: 8936-8946.PubMed Jeon CJ, Strettoi E, Masland RH: The major cell populations of the mouse retina. J Neurosci. 1998, 18: 8936-8946.PubMed
31.
go back to reference Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA: Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res. 2010, 91: 415-424. 10.1016/j.exer.2010.06.018.PubMedCentralCrossRefPubMed Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA: Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res. 2010, 91: 415-424. 10.1016/j.exer.2010.06.018.PubMedCentralCrossRefPubMed
32.
go back to reference Pang JJ, Wu SM: Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci. 2011, 52: 4886-4896. 10.1167/iovs.10-5921.PubMedCentralCrossRefPubMed Pang JJ, Wu SM: Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci. 2011, 52: 4886-4896. 10.1167/iovs.10-5921.PubMedCentralCrossRefPubMed
33.
go back to reference Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW: Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis. 2013, 19: 1387-1396.PubMedCentralPubMed Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW: Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis. 2013, 19: 1387-1396.PubMedCentralPubMed
34.
go back to reference Zhang Z, Zhang ZY, Wu Y, Schluesener HJ: Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation. 2012, 19: 10-19. 10.1159/000326771.CrossRefPubMed Zhang Z, Zhang ZY, Wu Y, Schluesener HJ: Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation. 2012, 19: 10-19. 10.1159/000326771.CrossRefPubMed
35.
go back to reference Babcock AA, Toft-Hansen H, Owens T: Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol. 2008, 181: 6481-6490. 10.4049/jimmunol.181.9.6481.CrossRefPubMed Babcock AA, Toft-Hansen H, Owens T: Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol. 2008, 181: 6481-6490. 10.4049/jimmunol.181.9.6481.CrossRefPubMed
36.
go back to reference Esen N, Kielian T: Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J Immunol. 2006, 176: 6802-6811. 10.4049/jimmunol.176.11.6802.PubMedCentralCrossRefPubMed Esen N, Kielian T: Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J Immunol. 2006, 176: 6802-6811. 10.4049/jimmunol.176.11.6802.PubMedCentralCrossRefPubMed
37.
go back to reference Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Korner H, Baxter AG: Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J Immunol. 2011, 187: 791-804. 10.4049/jimmunol.1001992.CrossRefPubMed Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Korner H, Baxter AG: Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J Immunol. 2011, 187: 791-804. 10.4049/jimmunol.1001992.CrossRefPubMed
38.
go back to reference Torres M, Guiton R, Lacroix-Lamande S, Ryffel B, Leman S, Dimier-Poisson I: MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection. J Neuroinflammation. 2013, 10: 19-10.1186/1742-2094-10-19.PubMedCentralCrossRefPubMed Torres M, Guiton R, Lacroix-Lamande S, Ryffel B, Leman S, Dimier-Poisson I: MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection. J Neuroinflammation. 2013, 10: 19-10.1186/1742-2094-10-19.PubMedCentralCrossRefPubMed
39.
go back to reference Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol. 2011, 30: 16-34. 10.3109/08830185.2010.529976.CrossRefPubMed Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol. 2011, 30: 16-34. 10.3109/08830185.2010.529976.CrossRefPubMed
40.
go back to reference Pimentel-Coelho PM, Michaud JP, Rivest S: Evidence for a gender-specific protective role of innate immune receptors in a model of perinatal brain injury. J Neurosci. 2013, 33: 11556-11572. 10.1523/JNEUROSCI.0535-13.2013.CrossRefPubMed Pimentel-Coelho PM, Michaud JP, Rivest S: Evidence for a gender-specific protective role of innate immune receptors in a model of perinatal brain injury. J Neurosci. 2013, 33: 11556-11572. 10.1523/JNEUROSCI.0535-13.2013.CrossRefPubMed
41.
go back to reference Barton GM, Medzhitov R: Linking Toll-like receptors to IFN-alpha/beta expression. Nat Immunol. 2003, 4: 432-433. 10.1038/ni0503-432.CrossRefPubMed Barton GM, Medzhitov R: Linking Toll-like receptors to IFN-alpha/beta expression. Nat Immunol. 2003, 4: 432-433. 10.1038/ni0503-432.CrossRefPubMed
42.
go back to reference Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B: Microglial TIR-domain-containing adapter-inducing interferon-beta (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-kappaB. J Neuroinflammation. 2012, 9: 39-10.1186/1742-2094-9-39.PubMedCentralCrossRefPubMed Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B: Microglial TIR-domain-containing adapter-inducing interferon-beta (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-kappaB. J Neuroinflammation. 2012, 9: 39-10.1186/1742-2094-9-39.PubMedCentralCrossRefPubMed
43.
go back to reference Hanafy KA: The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013, 10: 83-10.1186/1742-2094-10-83.PubMedCentralCrossRefPubMed Hanafy KA: The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013, 10: 83-10.1186/1742-2094-10-83.PubMedCentralCrossRefPubMed
44.
go back to reference Lim JE, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, Fukuchi K: MyD88 deficiency ameliorates beta-amyloidosis in an animal model of Alzheimer’s disease. Am J Pathol. 2011, 179: 1095-1103. 10.1016/j.ajpath.2011.05.045.PubMedCentralCrossRefPubMed Lim JE, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, Fukuchi K: MyD88 deficiency ameliorates beta-amyloidosis in an animal model of Alzheimer’s disease. Am J Pathol. 2011, 179: 1095-1103. 10.1016/j.ajpath.2011.05.045.PubMedCentralCrossRefPubMed
45.
go back to reference Michaud JP, Richard KL, Rivest S: MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegeneration. 2011, 6: 5-10.1186/1750-1326-6-5.CrossRef Michaud JP, Richard KL, Rivest S: MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegeneration. 2011, 6: 5-10.1186/1750-1326-6-5.CrossRef
46.
go back to reference Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, Mansell A, Kile BT, Crack PJ: MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PLoS One. 2013, 8: e57948-10.1371/journal.pone.0057948.PubMedCentralCrossRefPubMed Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, Mansell A, Kile BT, Crack PJ: MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PLoS One. 2013, 8: e57948-10.1371/journal.pone.0057948.PubMedCentralCrossRefPubMed
47.
go back to reference Mizrahi T, Hauben E, Schwartz M: The tissue-specific self-pathogen is the protective self-antigen: the case of uveitis. J Immunol. 2002, 169: 5971-5977. 10.4049/jimmunol.169.10.5971.CrossRefPubMed Mizrahi T, Hauben E, Schwartz M: The tissue-specific self-pathogen is the protective self-antigen: the case of uveitis. J Immunol. 2002, 169: 5971-5977. 10.4049/jimmunol.169.10.5971.CrossRefPubMed
48.
go back to reference Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M: Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun. 2000, 15: 331-345. 10.1006/jaut.2000.0441.CrossRefPubMed Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M: Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun. 2000, 15: 331-345. 10.1006/jaut.2000.0441.CrossRefPubMed
49.
go back to reference Mao X, Moerman AM, Barger SW: Neuronal kappa B-binding factors consist of Sp1-related proteins. Functional implications for autoregulation of N-methyl-D-aspartate receptor-1 expression. J Biol Chem. 2002, 277: 44911-44919. 10.1074/jbc.M204292200.CrossRefPubMed Mao X, Moerman AM, Barger SW: Neuronal kappa B-binding factors consist of Sp1-related proteins. Functional implications for autoregulation of N-methyl-D-aspartate receptor-1 expression. J Biol Chem. 2002, 277: 44911-44919. 10.1074/jbc.M204292200.CrossRefPubMed
50.
go back to reference Mao XR, Moerman-Herzog AM, Chen Y, Barger SW: Unique aspects of transcriptional regulation in neurons - nuances in NFkappaB and Sp1-related factors. J Neuroinflammation. 2009, 6: 16-10.1186/1742-2094-6-16.PubMedCentralCrossRefPubMed Mao XR, Moerman-Herzog AM, Chen Y, Barger SW: Unique aspects of transcriptional regulation in neurons - nuances in NFkappaB and Sp1-related factors. J Neuroinflammation. 2009, 6: 16-10.1186/1742-2094-6-16.PubMedCentralCrossRefPubMed
51.
go back to reference Famakin BM, Mou Y, Ruetzler CA, Bembry J, Maric D, Hallenbeck JM: Disruption of downstream MyD88 or TRIF Toll-like receptor signaling does not protect against cerebral ischemia. Brain Res. 2011, 1388: 148-156.CrossRefPubMed Famakin BM, Mou Y, Ruetzler CA, Bembry J, Maric D, Hallenbeck JM: Disruption of downstream MyD88 or TRIF Toll-like receptor signaling does not protect against cerebral ischemia. Brain Res. 2011, 1388: 148-156.CrossRefPubMed
52.
go back to reference Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F: The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflammation. 2011, 8: 137-10.1186/1742-2094-8-137.PubMedCentralCrossRefPubMed Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F: The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflammation. 2011, 8: 137-10.1186/1742-2094-8-137.PubMedCentralCrossRefPubMed
53.
go back to reference Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW: Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012, 122: 1246-1261. 10.1172/JCI61135.PubMedCentralCrossRefPubMed Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW: Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012, 122: 1246-1261. 10.1172/JCI61135.PubMedCentralCrossRefPubMed
54.
go back to reference Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci. 2008, 49: 4162-4168. 10.1167/iovs.08-1738.CrossRefPubMed Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci. 2008, 49: 4162-4168. 10.1167/iovs.08-1738.CrossRefPubMed
55.
go back to reference Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005, 307: 254-258. 10.1126/science.1102901.CrossRefPubMed Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005, 307: 254-258. 10.1126/science.1102901.CrossRefPubMed
56.
go back to reference Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG: Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci. 2008, 49: 1599-1608. 10.1167/iovs.07-0953.CrossRefPubMed Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG: Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci. 2008, 49: 1599-1608. 10.1167/iovs.07-0953.CrossRefPubMed
57.
go back to reference Kezic J, McMenamin PG: The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2010, 51: 5121-5127. 10.1167/iovs.10-5325.CrossRefPubMed Kezic J, McMenamin PG: The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2010, 51: 5121-5127. 10.1167/iovs.10-5325.CrossRefPubMed
58.
go back to reference Dagkalis A, Wallace C, Hing B, Liversidge J, Crane IJ: CX3CR1-deficiency is associated with increased severity of disease in experimental autoimmune uveitis. Immunology. 2009, 128: 25-33. 10.1111/j.1365-2567.2009.03046.x.PubMedCentralCrossRefPubMed Dagkalis A, Wallace C, Hing B, Liversidge J, Crane IJ: CX3CR1-deficiency is associated with increased severity of disease in experimental autoimmune uveitis. Immunology. 2009, 128: 25-33. 10.1111/j.1365-2567.2009.03046.x.PubMedCentralCrossRefPubMed
59.
go back to reference Zhao L, Ma W, Fariss RN, Wong WT: Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Exp Eye Res. 2009, 88: 1004-1013. 10.1016/j.exer.2008.12.013.PubMedCentralCrossRefPubMed Zhao L, Ma W, Fariss RN, Wong WT: Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Exp Eye Res. 2009, 88: 1004-1013. 10.1016/j.exer.2008.12.013.PubMedCentralCrossRefPubMed
60.
go back to reference Luhmann UF, Carvalho LS, Robbie SJ, Cowing JA, Duran Y, Munro PM, Bainbridge JW, Ali RR: Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res. 2013, 107: 80-87. 10.1016/j.exer.2012.11.015.PubMedCentralCrossRefPubMed Luhmann UF, Carvalho LS, Robbie SJ, Cowing JA, Duran Y, Munro PM, Bainbridge JW, Ali RR: Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res. 2013, 107: 80-87. 10.1016/j.exer.2012.11.015.PubMedCentralCrossRefPubMed
61.
go back to reference Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE: Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol. 2013, 191: 1063-1072. 10.4049/jimmunol.1300040.PubMedCentralCrossRefPubMed Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE: Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol. 2013, 191: 1063-1072. 10.4049/jimmunol.1300040.PubMedCentralCrossRefPubMed
62.
go back to reference Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE, Lobo PI, Okusa MD: The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008, 74: 1526-1537. 10.1038/ki.2008.500.PubMedCentralCrossRefPubMed Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE, Lobo PI, Okusa MD: The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008, 74: 1526-1537. 10.1038/ki.2008.500.PubMedCentralCrossRefPubMed
63.
go back to reference Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG: Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS + macrophages. J Neurosci. 2011, 31: 9910-9922. 10.1523/JNEUROSCI.2114-11.2011.PubMedCentralCrossRefPubMed Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG: Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS + macrophages. J Neurosci. 2011, 31: 9910-9922. 10.1523/JNEUROSCI.2114-11.2011.PubMedCentralCrossRefPubMed
64.
go back to reference Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, Patterson C, Patel DD: CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol. 2008, 28: 243-250. 10.1161/ATVBAHA.107.158675.CrossRefPubMed Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, Patterson C, Patel DD: CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol. 2008, 28: 243-250. 10.1161/ATVBAHA.107.158675.CrossRefPubMed
65.
go back to reference Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, Bacon KB, Zerwes HG, Feng L: NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol. 2000, 67: 577-584.PubMed Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, Bacon KB, Zerwes HG, Feng L: NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol. 2000, 67: 577-584.PubMed
66.
go back to reference Popovic M, Laumonnier Y, Burysek L, Syrovets T, Simmet T: Thrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration. J Leukoc Biol. 2008, 84: 215-223. 10.1189/jlb.0907652.CrossRefPubMed Popovic M, Laumonnier Y, Burysek L, Syrovets T, Simmet T: Thrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration. J Leukoc Biol. 2008, 84: 215-223. 10.1189/jlb.0907652.CrossRefPubMed
67.
go back to reference Souto FO, Alves-Filho JC, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Cunha FQ: Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am J Respir Crit Care Med. 2011, 183: 234-242.CrossRefPubMed Souto FO, Alves-Filho JC, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Cunha FQ: Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am J Respir Crit Care Med. 2011, 183: 234-242.CrossRefPubMed
68.
go back to reference Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, Ibarra J, Melby PC, Ahuja SS: CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010, 184: 5571-5581. 10.4049/jimmunol.0803494.PubMedCentralCrossRefPubMed Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, Ibarra J, Melby PC, Ahuja SS: CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010, 184: 5571-5581. 10.4049/jimmunol.0803494.PubMedCentralCrossRefPubMed
69.
go back to reference Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7: 678-689.CrossRefPubMed Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7: 678-689.CrossRefPubMed
70.
go back to reference Pober JS, Sessa WC: Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007, 7: 803-815.CrossRefPubMed Pober JS, Sessa WC: Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007, 7: 803-815.CrossRefPubMed
71.
go back to reference Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan WB: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013, 155: 1596-1609. 10.1016/j.cell.2013.11.030.PubMedCentralCrossRefPubMed Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan WB: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013, 155: 1596-1609. 10.1016/j.cell.2013.11.030.PubMedCentralCrossRefPubMed
Metadata
Title
Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice
Authors
Neal D Heuss
Mark J Pierson
Kim Ramil C Montaniel
Scott W McPherson
Ute Lehmann
Stacy A Hussong
Deborah A Ferrington
Walter C Low
Dale S Gregerson
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-014-0143-1

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue