Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Insulins | Research

Cellular responses to 8-methyl nonanoic acid, a degradation by-product of dihydrocapsaicin, in 3T3-L1 adipocytes

Authors: Uthai Wichai, Ploychanok Keawsomnuk, Saowarose Thongin, Chaiyot Mukthung, Chatchai Boonthip, Pattama Pittayakhajonwut, Pimonrat Ketsawatsomkron, Nuntavan Bunyapraphatsara, Kenjiro Muta

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Capsaicinoids, such as dihydrocapsaicin (DHC), exert the health-promoting effects of chili peppers on energy metabolism. The metabolic responses to capsaicinoids are primarily mediated through transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the varying contributions of their metabolites to beneficial health outcomes remain unclear. 8-methyl nonanoic acid (8-MNA), a methyl-branched medium chain fatty acid (MCFA), is an in vivo degradation by-product of DHC. Since MCFAs have emerged as metabolic modulators in adipocytes, here we examined various cellular responses to 8-MNA in 3T3-L1 adipocytes.

Methods

The viability of 3T3-L1 adipocytes exposed to various concentrations of 8-MNA was assessed by the Calcein AM assay. Biochemical assays for lipid accumulation, AMP-activated protein kinase (AMPK) activity, lipolysis and glucose uptake were performed in 3T3-L1 adipocytes treated with 8-MNA during 48-h nutrient starvation or 5-day maturation.

Results

8-MNA caused no impact on cell viability. During nutrient starvation, 8-MNA decreased lipid amounts in association with AMPK activation, a molecular event that suppresses lipogenic processes. Moreover, 3T3-L1 adipocytes that were treated with 8-MNA during 5-day maturation exhibited a reduced lipolytic response to isoproterenol and an increased glucose uptake when stimulated with insulin.

Conclusions

These results suggest that 8-MNA derived from DHC modulates energy metabolism in adipocytes and also support the idea that the metabolic benefits of chili consumption are partly attributable to 8-MNA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome Iran J Basic. Med Sci. 2018;21(5):439–48. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome Iran J Basic. Med Sci. 2018;21(5):439–48.
2.
go back to reference Varghese S, Kubatka P, Rodrigo L, Gazdikova K, Caprnda M, Fedotova J, Zulli A, Kruzliak P, Busselberg D. Chili pepper as a body weight-loss food. Int J Food Sci Nutr. 2017;68(4):392–401.CrossRef Varghese S, Kubatka P, Rodrigo L, Gazdikova K, Caprnda M, Fedotova J, Zulli A, Kruzliak P, Busselberg D. Chili pepper as a body weight-loss food. Int J Food Sci Nutr. 2017;68(4):392–401.CrossRef
3.
go back to reference Hammer J, Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol Motil. 2007;19(4):279–87.CrossRef Hammer J, Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol Motil. 2007;19(4):279–87.CrossRef
4.
go back to reference van Avesaat M, Troost FJ, Westerterp-Plantenga MS, Helyes Z, Le Roux CW, Dekker J, Masclee AA, Keszthelyi D. Capsaicin-induced satiety is associated with gastrointestinal distress but not with the release of satiety hormones. Am J Clin Nutr. 2016;103(2):305–13.CrossRef van Avesaat M, Troost FJ, Westerterp-Plantenga MS, Helyes Z, Le Roux CW, Dekker J, Masclee AA, Keszthelyi D. Capsaicin-induced satiety is associated with gastrointestinal distress but not with the release of satiety hormones. Am J Clin Nutr. 2016;103(2):305–13.CrossRef
5.
go back to reference Rollyson WD, Stover CA, Brown KC, Perry HE, Stevenson CD, McNees CA, Ball JG, Valentovic MA, Dasgupta P. Bioavailability of capsaicin and its implications for drug delivery. J Control Release. 2014;196:96–105.CrossRef Rollyson WD, Stover CA, Brown KC, Perry HE, Stevenson CD, McNees CA, Ball JG, Valentovic MA, Dasgupta P. Bioavailability of capsaicin and its implications for drug delivery. J Control Release. 2014;196:96–105.CrossRef
6.
go back to reference Braga Ferreira LG, Faria JV, Dos Santos JPS, Faria RX. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur J Pharmacol. 2020;887:173356.CrossRef Braga Ferreira LG, Faria JV, Dos Santos JPS, Faria RX. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur J Pharmacol. 2020;887:173356.CrossRef
7.
go back to reference Kawada T, Suzuki T, Takahashi M, Iwai K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol Appl Pharmacol. 1984;72(3):449–56.CrossRef Kawada T, Suzuki T, Takahashi M, Iwai K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol Appl Pharmacol. 1984;72(3):449–56.CrossRef
8.
go back to reference Kawada T, Iwai K. In Vivo and In Vitro Metabolism of Dihydrocapsaicin, a Pungent Principle of Hot Pepper. Rats Agri Biol Chem. 1985;49(2):441–8. Kawada T, Iwai K. In Vivo and In Vitro Metabolism of Dihydrocapsaicin, a Pungent Principle of Hot Pepper. Rats Agri Biol Chem. 1985;49(2):441–8.
9.
go back to reference Lindsey K, Yeoman MM. The synthetic potential of immobilised cells of Capsicum frutescens Mill cv. annuum. Planta. 1984;162(6):495–501.CrossRef Lindsey K, Yeoman MM. The synthetic potential of immobilised cells of Capsicum frutescens Mill cv. annuum. Planta. 1984;162(6):495–501.CrossRef
10.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.CrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.CrossRef
11.
go back to reference Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) gamma activators and pan-PPAR partial agonists. PLoS ONE. 2012;7(5):e36297.CrossRef Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) gamma activators and pan-PPAR partial agonists. PLoS ONE. 2012;7(5):e36297.CrossRef
12.
go back to reference Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 2014;25(6):293–302.CrossRef Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 2014;25(6):293–302.CrossRef
13.
go back to reference Nagao K, Yanagita T. Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol Res. 2010;61(3):208–12.CrossRef Nagao K, Yanagita T. Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol Res. 2010;61(3):208–12.CrossRef
14.
go back to reference Yang JY, Della-Fera MA, Rayalam S, Park HJ, Ambati S, Hausman DB, Hartzell DL, Baile CA. Regulation of adipogenesis by medium-chain fatty acids in the absence of hormonal cocktail. J Nutr Biochem. 2009;20(7):537–43.CrossRef Yang JY, Della-Fera MA, Rayalam S, Park HJ, Ambati S, Hausman DB, Hartzell DL, Baile CA. Regulation of adipogenesis by medium-chain fatty acids in the absence of hormonal cocktail. J Nutr Biochem. 2009;20(7):537–43.CrossRef
15.
go back to reference Han J, Farmer SR, Kirkland JL, Corkey BE, Yoon R, Pirtskhalava T, Ido Y, Guo W. Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes. J Nutr. 2002;132(5):904–10.CrossRef Han J, Farmer SR, Kirkland JL, Corkey BE, Yoon R, Pirtskhalava T, Ido Y, Guo W. Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes. J Nutr. 2002;132(5):904–10.CrossRef
16.
go back to reference Laolob T, Bunyapraphatsara N, Waranuch N, Pongcharoen S, Punyain W, Chancharunee S, Sakchaisri K, Pratuangdejkul J, Chongruchiroj S, Kielar F, et al. Enhancement of Lipolysis in 3T3-L1 Adipocytes by Nitroarene Capsaicinoid Analogs. Nat Prod Com. 2021;16(1):1934578X20987949. Laolob T, Bunyapraphatsara N, Waranuch N, Pongcharoen S, Punyain W, Chancharunee S, Sakchaisri K, Pratuangdejkul J, Chongruchiroj S, Kielar F, et al. Enhancement of Lipolysis in 3T3-L1 Adipocytes by Nitroarene Capsaicinoid Analogs. Nat Prod Com. 2021;16(1):1934578X20987949.
17.
go back to reference Weston SA, Parish CR. New fluorescent dyes for lymphocyte migration studies Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods. 1990;133(1):87–97.CrossRef Weston SA, Parish CR. New fluorescent dyes for lymphocyte migration studies Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods. 1990;133(1):87–97.CrossRef
18.
go back to reference Kalderon B, Azazmeh N, Azulay N, Vissler N, Valitsky M, Bar-Tana J. Suppression of adipose lipolysis by long-chain fatty acid analogs. J Lipid Res. 2012;53(5):868–78.CrossRef Kalderon B, Azazmeh N, Azulay N, Vissler N, Valitsky M, Bar-Tana J. Suppression of adipose lipolysis by long-chain fatty acid analogs. J Lipid Res. 2012;53(5):868–78.CrossRef
19.
go back to reference Malodobra-Mazur M, Cierzniak A, Dobosz T. Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA Methylation and may predispose to obesity and obesity-related disorders. Lipids Health Dis. 2019;18(1):230.CrossRef Malodobra-Mazur M, Cierzniak A, Dobosz T. Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA Methylation and may predispose to obesity and obesity-related disorders. Lipids Health Dis. 2019;18(1):230.CrossRef
20.
go back to reference Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M. Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE. 2014;9(7):e103093.CrossRef Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M. Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE. 2014;9(7):e103093.CrossRef
21.
go back to reference Teixeira C, Sousa AP, Santos I, Rocha AC, Alencastre I, Pereira AC, Martins-Mendes D, Barata P, Baylina P, Fernandes R. Enhanced 3T3-L1 Differentiation into Adipocytes by Pioglitazone Pharmacological Activation of Peroxisome Proliferator Activated Receptor-Gamma (PPAR-gamma). Biology (Basel). 2022;11(6):806. Teixeira C, Sousa AP, Santos I, Rocha AC, Alencastre I, Pereira AC, Martins-Mendes D, Barata P, Baylina P, Fernandes R. Enhanced 3T3-L1 Differentiation into Adipocytes by Pioglitazone Pharmacological Activation of Peroxisome Proliferator Activated Receptor-Gamma (PPAR-gamma). Biology (Basel). 2022;11(6):806.
22.
go back to reference Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci. 2020;7:76.CrossRef Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci. 2020;7:76.CrossRef
23.
go back to reference Lee MS, Kim CT, Kim IH, Kim Y. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother Res. 2011;25(6):935–9.CrossRef Lee MS, Kim CT, Kim IH, Kim Y. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother Res. 2011;25(6):935–9.CrossRef
24.
go back to reference Lei T, Xie W, Han J, Corkey BE, Hamilton JA, Guo W. Medium-chain Fatty acids attenuate agonist-stimulated lipolysis, mimicking the effects of starvation. Obes Res. 2004;12(4):599–611.CrossRef Lei T, Xie W, Han J, Corkey BE, Hamilton JA, Guo W. Medium-chain Fatty acids attenuate agonist-stimulated lipolysis, mimicking the effects of starvation. Obes Res. 2004;12(4):599–611.CrossRef
25.
go back to reference Wein S, Wolffram S, Schrezenmeir J, Gasperikova D, Klimes I, Sebokova E. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab Res Rev. 2009;25(2):185–94.CrossRef Wein S, Wolffram S, Schrezenmeir J, Gasperikova D, Klimes I, Sebokova E. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab Res Rev. 2009;25(2):185–94.CrossRef
26.
go back to reference Lundsgaard AM, Fritzen AM, Sjoberg KA, Kleinert M, Richter EA, Kiens B. Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes. 2021;70(1):91–8.CrossRef Lundsgaard AM, Fritzen AM, Sjoberg KA, Kleinert M, Richter EA, Kiens B. Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes. 2021;70(1):91–8.CrossRef
27.
go back to reference Wang ME, Singh BK, Hsu MC, Huang C, Yen PM, Wu LS, Jong DS, Chiu CH. Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Sci Rep. 2017;7(1):13999.CrossRef Wang ME, Singh BK, Hsu MC, Huang C, Yen PM, Wu LS, Jong DS, Chiu CH. Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Sci Rep. 2017;7(1):13999.CrossRef
28.
go back to reference Martinez L, Berenguer M, Bruce MC, Le Marchand-Brustel Y, Govers R. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol. 2010;79(9):1300–9.CrossRef Martinez L, Berenguer M, Bruce MC, Le Marchand-Brustel Y, Govers R. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol. 2010;79(9):1300–9.CrossRef
29.
go back to reference Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules. 2016;21(7):844.CrossRef Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules. 2016;21(7):844.CrossRef
30.
go back to reference Ramirez-Barrantes R, Cordova C, Gatica S, Rodriguez B, Lozano C, Marchant I, Echeverria C, Simon F, Olivero P. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death. Front Physiol. 2018;9:682.CrossRef Ramirez-Barrantes R, Cordova C, Gatica S, Rodriguez B, Lozano C, Marchant I, Echeverria C, Simon F, Olivero P. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death. Front Physiol. 2018;9:682.CrossRef
31.
go back to reference Traul KA, Driedger A, Ingle DL, Nakhasi D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol. 2000;38(1):79–98.CrossRef Traul KA, Driedger A, Ingle DL, Nakhasi D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol. 2000;38(1):79–98.CrossRef
32.
go back to reference Miyagawa Y, Mori T, Goto K, Kawahara I, Fujiwara-Tani R, Kishi S, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Intake of medium-chain fatty acids induces myocardial oxidative stress and atrophy. Lipids Health Dis. 2018;17(1):258.CrossRef Miyagawa Y, Mori T, Goto K, Kawahara I, Fujiwara-Tani R, Kishi S, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Intake of medium-chain fatty acids induces myocardial oxidative stress and atrophy. Lipids Health Dis. 2018;17(1):258.CrossRef
33.
go back to reference Rosenfeld D, Senko AW, Moon J, Yick I, Varnavides G, Gregurec D, Koehler F, Chiang PH, Christiansen MG, Maeng LY, et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci Adv. 2020;6(15):eaaz3734.CrossRef Rosenfeld D, Senko AW, Moon J, Yick I, Varnavides G, Gregurec D, Koehler F, Chiang PH, Christiansen MG, Maeng LY, et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci Adv. 2020;6(15):eaaz3734.CrossRef
34.
go back to reference Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med. 1986;183(2):250–6.CrossRef Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med. 1986;183(2):250–6.CrossRef
35.
go back to reference Hochkogler CM, Lieder B, Schachner D, Heiss E, Schroter A, Hans J, Ley JP, Krammer GE, Somoza V. Capsaicin and nonivamide similarly modulate outcome measures of mitochondrial energy metabolism in HepG2 and 3T3-L1 cells. Food Funct. 2018;9(2):1123–32.CrossRef Hochkogler CM, Lieder B, Schachner D, Heiss E, Schroter A, Hans J, Ley JP, Krammer GE, Somoza V. Capsaicin and nonivamide similarly modulate outcome measures of mitochondrial energy metabolism in HepG2 and 3T3-L1 cells. Food Funct. 2018;9(2):1123–32.CrossRef
36.
go back to reference Liu Y, Xue C, Zhang Y, Xu Q, Yu X, Zhang X, Wang J, Zhang R, Gong X, Guo C. Triglyceride with medium-chain fatty acids increases the activity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice. Biosci Biotechnol Biochem. 2011;75(10):1939–44.CrossRef Liu Y, Xue C, Zhang Y, Xu Q, Yu X, Zhang X, Wang J, Zhang R, Gong X, Guo C. Triglyceride with medium-chain fatty acids increases the activity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice. Biosci Biotechnol Biochem. 2011;75(10):1939–44.CrossRef
37.
go back to reference Shinohara H, Wu J, Kasai M, Aoyama T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci Biotechnol Biochem. 2006;70(12):2919–26.CrossRef Shinohara H, Wu J, Kasai M, Aoyama T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci Biotechnol Biochem. 2006;70(12):2919–26.CrossRef
38.
go back to reference Zhang Y, Xu Q, Liu YH, Zhang XS, Wang J, Yu XM, Zhang RX, Xue C, Yang XY, Xue CY. Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet. Biomed Environ Sci. 2015;28(2):97–104. Zhang Y, Xu Q, Liu YH, Zhang XS, Wang J, Yu XM, Zhang RX, Xue C, Yang XY, Xue CY. Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet. Biomed Environ Sci. 2015;28(2):97–104.
39.
go back to reference Wang B, Fu J, Li L, Gong D, Wen X, Yu P, Zeng Z. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis. Int J Food Sci Nutr. 2016;67(3):288–97.CrossRef Wang B, Fu J, Li L, Gong D, Wen X, Yu P, Zeng Z. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis. Int J Food Sci Nutr. 2016;67(3):288–97.CrossRef
40.
go back to reference Hoeks J, Mensink M, Hesselink MK, Ekroos K, Schrauwen P. Long- and medium-chain fatty acids induce insulin resistance to a similar extent in humans despite marked differences in muscle fat accumulation. J Clin Endocrinol Metab. 2012;97(1):208–16.CrossRef Hoeks J, Mensink M, Hesselink MK, Ekroos K, Schrauwen P. Long- and medium-chain fatty acids induce insulin resistance to a similar extent in humans despite marked differences in muscle fat accumulation. J Clin Endocrinol Metab. 2012;97(1):208–16.CrossRef
41.
go back to reference Nomura T, Iguchi A, Sakamoto N, Harris RA. Effects of octanoate and acetate upon hepatic glycolysis and lipogenesis. Biochim Biophys Acta. 1983;754(3):315–20.CrossRef Nomura T, Iguchi A, Sakamoto N, Harris RA. Effects of octanoate and acetate upon hepatic glycolysis and lipogenesis. Biochim Biophys Acta. 1983;754(3):315–20.CrossRef
42.
go back to reference Geelen MJ. Medium-chain fatty acids as short-term regulators of hepatic lipogenesis. Biochem J. 1994;302(Pt 1):141–6.CrossRef Geelen MJ. Medium-chain fatty acids as short-term regulators of hepatic lipogenesis. Biochem J. 1994;302(Pt 1):141–6.CrossRef
43.
go back to reference Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond). 2013;124(8):491–507.CrossRef Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond). 2013;124(8):491–507.CrossRef
44.
go back to reference Smith BK, Steinberg GR. AMP-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2017;20(4):248–53.CrossRef Smith BK, Steinberg GR. AMP-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2017;20(4):248–53.CrossRef
45.
go back to reference Lipovka Y, Konhilas JP. AMP-Activated Protein Kinase Signalling in Cancer and Cardiac Hypertrophy. Cardiovasc Pharm Open Access. 2015;4(3):154. Lipovka Y, Konhilas JP. AMP-Activated Protein Kinase Signalling in Cancer and Cardiac Hypertrophy. Cardiovasc Pharm Open Access. 2015;4(3):154.
46.
go back to reference Bort A, Sanchez BG, Mateos-Gomez PA, Diaz-Laviada I, Rodriguez-Henche N. Capsaicin Targets Lipogenesis in HepG2 Cells Through AMPK Activation, AKT Inhibition and PPARs Regulation. Int J Mol Sci. 2019;20(7):1660.CrossRef Bort A, Sanchez BG, Mateos-Gomez PA, Diaz-Laviada I, Rodriguez-Henche N. Capsaicin Targets Lipogenesis in HepG2 Cells Through AMPK Activation, AKT Inhibition and PPARs Regulation. Int J Mol Sci. 2019;20(7):1660.CrossRef
47.
go back to reference Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89.CrossRef Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89.CrossRef
48.
go back to reference Rial SA, Jutras-Carignan A, Bergeron KF, Mounier C. A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(3):158582.CrossRef Rial SA, Jutras-Carignan A, Bergeron KF, Mounier C. A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(3):158582.CrossRef
49.
go back to reference Wang Y, Liu Z, Han Y, Xu J, Huang W, Li Z. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS ONE. 2018;13(2):e0191182.CrossRef Wang Y, Liu Z, Han Y, Xu J, Huang W, Li Z. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS ONE. 2018;13(2):e0191182.CrossRef
50.
go back to reference Yue C, Li M, Li J, Han X, Zhu H, Yu G, Cheng J. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE(-/-) mice. Food Funct. 2020;11(6):5142–55.CrossRef Yue C, Li M, Li J, Han X, Zhu H, Yu G, Cheng J. Medium-, long- and medium-chain-type structured lipids ameliorate high-fat diet-induced atherosclerosis by regulating inflammation, adipogenesis, and gut microbiota in ApoE(-/-) mice. Food Funct. 2020;11(6):5142–55.CrossRef
51.
go back to reference Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57(6):943–54.CrossRef Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57(6):943–54.CrossRef
52.
go back to reference Takikawa M, Kumagai A, Hirata H, Soga M, Yamashita Y, Ueda M, Ashida H, Tsuda T. 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5’-AMP-activated protein kinase in L6 myotubes and mice. Mol Nutr Food Res. 2013;57(10):1794–802.CrossRef Takikawa M, Kumagai A, Hirata H, Soga M, Yamashita Y, Ueda M, Ashida H, Tsuda T. 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5’-AMP-activated protein kinase in L6 myotubes and mice. Mol Nutr Food Res. 2013;57(10):1794–802.CrossRef
53.
go back to reference Bourron O, Daval M, Hainault I, Hajduch E, Servant JM, Gautier JF, Ferre P, Foufelle F. Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia. 2010;53(4):768–78.CrossRef Bourron O, Daval M, Hainault I, Hajduch E, Servant JM, Gautier JF, Ferre P, Foufelle F. Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia. 2010;53(4):768–78.CrossRef
54.
go back to reference Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A. Regulation of adipocyte lipolysis. Nutr Res Rev. 2014;27(1):63–93.CrossRef Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A. Regulation of adipocyte lipolysis. Nutr Res Rev. 2014;27(1):63–93.CrossRef
55.
go back to reference Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79–101.CrossRef Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79–101.CrossRef
56.
go back to reference Guisard D, Bach A, Debry G, Métais P. Comparison of the metabolic effects of short and medium even-chain fatty acids (C 8 and C 10) triglycerides and odd-chain fatty acid (C 9) triglycerides in dogs. Horm Metab Res. 1973;5(3):191–5.CrossRef Guisard D, Bach A, Debry G, Métais P. Comparison of the metabolic effects of short and medium even-chain fatty acids (C 8 and C 10) triglycerides and odd-chain fatty acid (C 9) triglycerides in dogs. Horm Metab Res. 1973;5(3):191–5.CrossRef
Metadata
Title
Cellular responses to 8-methyl nonanoic acid, a degradation by-product of dihydrocapsaicin, in 3T3-L1 adipocytes
Authors
Uthai Wichai
Ploychanok Keawsomnuk
Saowarose Thongin
Chaiyot Mukthung
Chatchai Boonthip
Pattama Pittayakhajonwut
Pimonrat Ketsawatsomkron
Nuntavan Bunyapraphatsara
Kenjiro Muta
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03844-w

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue