Skip to main content
Top
Published in: BMC Nephrology 1/2020

Open Access 01-12-2020 | Respiratory Microbiota | Research article

The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature

Authors: Jordan Stanford, Karen Charlton, Anita Stefoska-Needham, Rukayat Ibrahim, Kelly Lambert

Published in: BMC Nephrology | Issue 1/2020

Login to get access

Abstract

Background

There is mounting evidence that individuals with kidney disease and kidney stones have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of these individuals may differ from controls. Synthesis of this evidence is essential to inform future clinical trials. This systematic review aims to characterise differences of the gut microbial community in adults with kidney disease and kidney stones, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies.

Methods

Included studies were those that investigated the gut microbial community in adults with kidney disease or kidney stones and compared this to the profile of controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science and Cochrane Library), as well as selected grey literature sources, were searched. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised.

Results

Twenty-five articles met the eligibility criteria and included data from a total of 892 adults with kidney disease or kidney stones and 1400 controls. Compared to controls, adults with kidney disease had increased abundances of several microbes including Enterobacteriaceae, Streptococcaceae, Streptococcus and decreased abundances of Prevotellaceae, Prevotella, Prevotella 9 and Roseburia among other taxa. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Differences in the functional potential of the microbial community between controls and adults with kidney disease or kidney stones were also identified. Only three of the 25 articles presented dietary data, and of these studies, only two used a valid dietary assessment method.

Conclusions

The gut microbiota profile of adults with kidney disease and kidney stones differs from controls. Future study designs should include adequate reporting of important confounders such as dietary intake to assist with interpretation of findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–98.PubMedCrossRef Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–98.PubMedCrossRef
2.
go back to reference Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82.CrossRef Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82.CrossRef
3.
go back to reference Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Gonzalez-Parra E, et al. Nutrients turned into toxins: microbiota modulation of nutrient properties in chronic kidney disease. Nutrients. 2017;9:489.PubMedCentralCrossRef Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Gonzalez-Parra E, et al. Nutrients turned into toxins: microbiota modulation of nutrient properties in chronic kidney disease. Nutrients. 2017;9:489.PubMedCentralCrossRef
4.
go back to reference Allaband C, McDonald D, Vazquez-Baeza Y, Minich JJ, Tripathi A, et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol. 2019;17:218–30.PubMedCrossRef Allaband C, McDonald D, Vazquez-Baeza Y, Minich JJ, Tripathi A, et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol. 2019;17:218–30.PubMedCrossRef
5.
go back to reference Fraher MH, O'Toole PW, Quigley E. Techniques used to characterize the gut microbiota: A guide for the clinician; 2012. p. 312–22. Fraher MH, O'Toole PW, Quigley E. Techniques used to characterize the gut microbiota: A guide for the clinician; 2012. p. 312–22.
6.
8.
go back to reference Vaziri ND. Effect of Synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol. 2016;11:1–3.CrossRef Vaziri ND. Effect of Synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol. 2016;11:1–3.CrossRef
9.
10.
go back to reference Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37.PubMedCrossRef Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37.PubMedCrossRef
11.
go back to reference Koppe L, Fouque D, Soulage CO. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins (Basel). 2018;10:155.CrossRef Koppe L, Fouque D, Soulage CO. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins (Basel). 2018;10:155.CrossRef
12.
13.
go back to reference Felizardo RJF, Castoldi A, Andrade-Oliveira V, Câmara NOS. The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunol. 2016;5:e86.CrossRef Felizardo RJF, Castoldi A, Andrade-Oliveira V, Câmara NOS. The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunol. 2016;5:e86.CrossRef
14.
go back to reference Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, et al. P-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26:938–47.PubMedCrossRef Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, et al. P-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26:938–47.PubMedCrossRef
15.
go back to reference Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, et al. Microbiota-derived Phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27:3479.PubMedPubMedCentralCrossRef Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, et al. Microbiota-derived Phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27:3479.PubMedPubMedCentralCrossRef
16.
go back to reference Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014;15:87.PubMedPubMedCentralCrossRef Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014;15:87.PubMedPubMedCentralCrossRef
17.
go back to reference Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–55.PubMedCrossRef Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–55.PubMedCrossRef
18.
go back to reference Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128:303–11.PubMedCrossRef Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128:303–11.PubMedCrossRef
19.
go back to reference Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19:1197–203.PubMedPubMedCentralCrossRef Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19:1197–203.PubMedPubMedCentralCrossRef
20.
go back to reference Kumar R, Mukherjee M, Bhandari M, Kumar A, Sidhu H, et al. Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol. 2002;41:318–22.PubMedCrossRef Kumar R, Mukherjee M, Bhandari M, Kumar A, Sidhu H, et al. Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol. 2002;41:318–22.PubMedCrossRef
21.
go back to reference Abratt VR, Reid SJ. Chapter 3 - oxalate-degrading Bacteria of the human gut as probiotics in the Management of Kidney Stone Disease. Adv Appl Microbiol. 2010;72:63–87.PubMedCrossRef Abratt VR, Reid SJ. Chapter 3 - oxalate-degrading Bacteria of the human gut as probiotics in the Management of Kidney Stone Disease. Adv Appl Microbiol. 2010;72:63–87.PubMedCrossRef
22.
go back to reference Miller AW, Dearing D. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens (Basel, Switzerland). 2013;2:636–52. Miller AW, Dearing D. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens (Basel, Switzerland). 2013;2:636–52.
23.
go back to reference Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013;83:1144–9.PubMedCrossRef Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013;83:1144–9.PubMedCrossRef
24.
go back to reference Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog. 2017;109:287–91.PubMedCrossRef Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog. 2017;109:287–91.PubMedCrossRef
26.
go back to reference Korpela K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu Rev Food Sci Technol. 2018;9:65–84.PubMedCrossRef Korpela K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu Rev Food Sci Technol. 2018;9:65–84.PubMedCrossRef
28.
go back to reference Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32:921–31.PubMedCrossRef Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32:921–31.PubMedCrossRef
29.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097.PubMedPubMedCentralCrossRef
31.
go back to reference Filippini T, Heck JE, Malagoli C, Del Giovane C, Vinceti M. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33:36–66.PubMedPubMedCentralCrossRef Filippini T, Heck JE, Malagoli C, Del Giovane C, Vinceti M. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33:36–66.PubMedPubMedCentralCrossRef
32.
go back to reference Roever L, Resende ES, Diniz ALD, Penha-Silva N, O’Connell JL, et al. Metabolic syndrome and risk of stroke: protocol for an update systematic review and meta-analysis. Medicine. 2018;97:e9862.PubMedPubMedCentralCrossRef Roever L, Resende ES, Diniz ALD, Penha-Silva N, O’Connell JL, et al. Metabolic syndrome and risk of stroke: protocol for an update systematic review and meta-analysis. Medicine. 2018;97:e9862.PubMedPubMedCentralCrossRef
33.
go back to reference Scholten-Peeters GG, Verhagen AP, Bekkering GE, van der Windt DA, Barnsley L, et al. Prognostic factors of whiplash-associated disorders: a systematic review of prospective cohort studies. Pain. 2003;104:303–22.PubMedCrossRef Scholten-Peeters GG, Verhagen AP, Bekkering GE, van der Windt DA, Barnsley L, et al. Prognostic factors of whiplash-associated disorders: a systematic review of prospective cohort studies. Pain. 2003;104:303–22.PubMedCrossRef
34.
go back to reference Mols F, Vingerhoets AJ, Coebergh JW, van de Poll-Franse LV. Quality of life among long-term breast cancer survivors: a systematic review. Eur J Cancer. 2005;41:2613–9.PubMedCrossRef Mols F, Vingerhoets AJ, Coebergh JW, van de Poll-Franse LV. Quality of life among long-term breast cancer survivors: a systematic review. Eur J Cancer. 2005;41:2613–9.PubMedCrossRef
35.
go back to reference Ariëns GA, van Mechelen W, Bongers PM, Bouter LM, van der Wal G. Physical risk factors for neck pain. Scand J Work Environ Health. 2000;26:7–19. Ariëns GA, van Mechelen W, Bongers PM, Bouter LM, van der Wal G. Physical risk factors for neck pain. Scand J Work Environ Health. 2000;26:7–19.
36.
go back to reference Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–7.PubMedCrossRef Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–7.PubMedCrossRef
37.
go back to reference Suryavanshi MV, Bhute SS, Gune RP, Shouche YS. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci Rep. 2018;8:16598.PubMedPubMedCentralCrossRef Suryavanshi MV, Bhute SS, Gune RP, Shouche YS. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease. Sci Rep. 2018;8:16598.PubMedPubMedCentralCrossRef
38.
go back to reference Suryavanshi MV, Bhute SS, Jadhav SD, Bhatia MS, Gune RP, et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci Rep. 2016;6:34712.PubMedPubMedCentralCrossRef Suryavanshi MV, Bhute SS, Jadhav SD, Bhatia MS, Gune RP, et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci Rep. 2016;6:34712.PubMedPubMedCentralCrossRef
39.
go back to reference De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, et al. Microbiota and Metabolome associated with immunoglobulin a nephropathy (IgAN). PLoS One. 2014;9:e99006.PubMedPubMedCentralCrossRef De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, et al. Microbiota and Metabolome associated with immunoglobulin a nephropathy (IgAN). PLoS One. 2014;9:e99006.PubMedPubMedCentralCrossRef
40.
go back to reference Tao S, Li L, Li L, Liu Y, Ren Q, et al. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol. 2019;56:581–92.PubMedCrossRef Tao S, Li L, Li L, Liu Y, Ren Q, et al. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol. 2019;56:581–92.PubMedCrossRef
41.
go back to reference Gradisteanu G, Stoica R, Petcu L, Picu A, Suceveanu A, et al. Microbiota signatures in type-2 diabetic patients with chronic kidney disease - a pilot study. J Mind Med Sci. 2019;6:130–6.CrossRef Gradisteanu G, Stoica R, Petcu L, Picu A, Suceveanu A, et al. Microbiota signatures in type-2 diabetic patients with chronic kidney disease - a pilot study. J Mind Med Sci. 2019;6:130–6.CrossRef
42.
go back to reference Al-Obaide MAI, Singh R, Datta P, Rewers-Felkins KA, Salguero MV, et al. Gut microbiota-dependent Trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. 2017;6:86.PubMedCentralCrossRef Al-Obaide MAI, Singh R, Datta P, Rewers-Felkins KA, Salguero MV, et al. Gut microbiota-dependent Trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. 2017;6:86.PubMedCentralCrossRef
43.
go back to reference Wang IK, Lai HC, Yu CJ, Liang CC, Chang CT, et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol. 2012;78:1107–12.PubMedPubMedCentralCrossRef Wang IK, Lai HC, Yu CJ, Liang CC, Chang CT, et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol. 2012;78:1107–12.PubMedPubMedCentralCrossRef
44.
go back to reference Wang F, Jiang H, Shi K, Ren Y, Zhang P, et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton). 2012;17:733–8.CrossRef Wang F, Jiang H, Shi K, Ren Y, Zhang P, et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton). 2012;17:733–8.CrossRef
45.
go back to reference Miao Y-Y, Xu C-M, Xia M, Zhu H-Q, Chen Y-Q. Relationship between gut microbiota and phosphorus metabolism in hemodialysis patients: a preliminary exploration. Chin Med J. 2018;131:2792–9.PubMedPubMedCentralCrossRef Miao Y-Y, Xu C-M, Xia M, Zhu H-Q, Chen Y-Q. Relationship between gut microbiota and phosphorus metabolism in hemodialysis patients: a preliminary exploration. Chin Med J. 2018;131:2792–9.PubMedPubMedCentralCrossRef
46.
go back to reference Guirong YE, Minjie Z, Lixin YU, Junsheng YE, Lin Y, et al. Gut microbiota in renal transplant recipients, patients with chronic kidney disease and healthy subjects. Nan Fang Yi Ke Da Xue Xue Bao. 2018;38:1401–8.PubMed Guirong YE, Minjie Z, Lixin YU, Junsheng YE, Lin Y, et al. Gut microbiota in renal transplant recipients, patients with chronic kidney disease and healthy subjects. Nan Fang Yi Ke Da Xue Xue Bao. 2018;38:1401–8.PubMed
47.
go back to reference Jiang S, Xie S, Lv D, Zhang Y, Deng J, et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek. 2016;109:1389–96.PubMedCrossRef Jiang S, Xie S, Lv D, Zhang Y, Deng J, et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek. 2016;109:1389–96.PubMedCrossRef
48.
go back to reference Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–15.PubMedCrossRef Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–15.PubMedCrossRef
49.
go back to reference Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, et al. Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int. 2019;125(1):133–43.PubMedCrossRef Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, et al. Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int. 2019;125(1):133–43.PubMedCrossRef
50.
go back to reference Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, et al. Understanding the gut–kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut. 2018;67(12):2097–106.PubMedCrossRef Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, et al. Understanding the gut–kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut. 2018;67(12):2097–106.PubMedCrossRef
51.
52.
go back to reference Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206.PubMedPubMedCentralCrossRef Li F, Wang M, Wang J, Li R, Zhang Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206.PubMedPubMedCentralCrossRef
53.
go back to reference Tang R, Jiang Y, Tan A, Ye J, Xian X, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis. 2018;46(6):503–14.PubMedCrossRef Tang R, Jiang Y, Tan A, Ye J, Xian X, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis. 2018;46(6):503–14.PubMedCrossRef
55.
go back to reference Shi K, Wang F, Jiang H, Liu H, Wei M, et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci. 2014;59:2109–17.PubMedCrossRef Shi K, Wang F, Jiang H, Liu H, Wei M, et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci. 2014;59:2109–17.PubMedCrossRef
56.
go back to reference Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7:1445.PubMedPubMedCentralCrossRef Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7:1445.PubMedPubMedCentralCrossRef
57.
go back to reference Stadlbauer V, Horvath A, Ribitsch W, Schmerböck B, Schilcher G, et al. Structural and functional differences in gut microbiome composition in patients undergoing haemodialysis or peritoneal dialysis. Sci Rep. 2017;7:15601.PubMedPubMedCentralCrossRef Stadlbauer V, Horvath A, Ribitsch W, Schmerböck B, Schilcher G, et al. Structural and functional differences in gut microbiome composition in patients undergoing haemodialysis or peritoneal dialysis. Sci Rep. 2017;7:15601.PubMedPubMedCentralCrossRef
58.
go back to reference Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis. 2016;44:399–407.PubMedCrossRefPubMedCentral Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis. 2016;44:399–407.PubMedCrossRefPubMedCentral
59.
go back to reference Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–35.PubMedPubMedCentral Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4:627–35.PubMedPubMedCentral
60.
go back to reference Lun H, Yang W, Zhao S, Jiang M, Xu M, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. MicrobiologyOpen. 2019;8:e00678.PubMedCrossRef Lun H, Yang W, Zhao S, Jiang M, Xu M, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. MicrobiologyOpen. 2019;8:e00678.PubMedCrossRef
61.
go back to reference Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, et al. Gut-microbiota-metabolite Axis in early renal function decline. PLoS One. 2015;10:e0134311.PubMedPubMedCentralCrossRef Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, et al. Gut-microbiota-metabolite Axis in early renal function decline. PLoS One. 2015;10:e0134311.PubMedPubMedCentralCrossRef
62.
go back to reference Li Y, Su X, Zhang L, Liu Y, Shi M, et al. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med. 2019;17:228.PubMedPubMedCentralCrossRef Li Y, Su X, Zhang L, Liu Y, Shi M, et al. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med. 2019;17:228.PubMedPubMedCentralCrossRef
63.
go back to reference Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.PubMedPubMedCentralCrossRef Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.PubMedPubMedCentralCrossRef
65.
go back to reference Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–70.PubMedCrossRef Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–70.PubMedCrossRef
66.
go back to reference March DS, Graham-Brown MPM, Stover CM, Bishop NC, Burton JO. Intestinal Barrier Disturbances in Haemodialysis Patients: Mechanisms, Consequences, and Therapeutic Options. BioMed Res Int. 2017;2017:5765417.PubMedPubMedCentralCrossRef March DS, Graham-Brown MPM, Stover CM, Bishop NC, Burton JO. Intestinal Barrier Disturbances in Haemodialysis Patients: Mechanisms, Consequences, and Therapeutic Options. BioMed Res Int. 2017;2017:5765417.PubMedPubMedCentralCrossRef
67.
go back to reference Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.PubMedCrossRef Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.PubMedCrossRef
68.
go back to reference Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. Biomed Res Int. 2017;2017:7.CrossRef Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. Biomed Res Int. 2017;2017:7.CrossRef
69.
go back to reference Wang X, Quinn P. Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria; 2010. p. 3–25. Wang X, Quinn P. Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria; 2010. p. 3–25.
70.
go back to reference Friedman JE. The maternal microbiome: cause or consequence of obesity risk in the next generation? Obesity. 2017;25:497–8.PubMedCrossRef Friedman JE. The maternal microbiome: cause or consequence of obesity risk in the next generation? Obesity. 2017;25:497–8.PubMedCrossRef
71.
go back to reference Chen H, Zhu J, Liu Y, Dong Z, Liu H, et al. Lipopolysaccharide induces chronic kidney injury and fibrosis through activation of mTOR signaling in macrophages. Am J Nephrol. 2015;42:305–17.PubMedCrossRef Chen H, Zhu J, Liu Y, Dong Z, Liu H, et al. Lipopolysaccharide induces chronic kidney injury and fibrosis through activation of mTOR signaling in macrophages. Am J Nephrol. 2015;42:305–17.PubMedCrossRef
73.
go back to reference van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev. 2017;75:286–305.PubMedCrossRef van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev. 2017;75:286–305.PubMedCrossRef
74.
go back to reference Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, et al. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185.PubMedPubMedCentralCrossRef Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, et al. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185.PubMedPubMedCentralCrossRef
75.
go back to reference McDaniel R, Licari P, Khosla C. Process Development and Metabolic Engineering for the Overproduction of Natural and Unnatural Polyketides. In: Nielsen J, Eggeling L, Dynesen J, Gárdonyi M, Gill RT, de Graaf AA, et al., editors. editors Metabolic Engineering. Berlin: Springer Berlin Heidelberg; 2001. p. 31–52.CrossRef McDaniel R, Licari P, Khosla C. Process Development and Metabolic Engineering for the Overproduction of Natural and Unnatural Polyketides. In: Nielsen J, Eggeling L, Dynesen J, Gárdonyi M, Gill RT, de Graaf AA, et al., editors. editors Metabolic Engineering. Berlin: Springer Berlin Heidelberg; 2001. p. 31–52.CrossRef
76.
go back to reference Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:40–7.PubMedCrossRef Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:40–7.PubMedCrossRef
77.
go back to reference Tebani A, Afonso C, Bekri S. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome. J Inherit Metab Dis. 2018;41:379–91.PubMedCrossRef Tebani A, Afonso C, Bekri S. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome. J Inherit Metab Dis. 2018;41:379–91.PubMedCrossRef
78.
go back to reference Yang C-Y, Tarng D-C. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology. 2018;23:16–20.PubMedCrossRef Yang C-Y, Tarng D-C. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology. 2018;23:16–20.PubMedCrossRef
80.
81.
go back to reference Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, et al. Probiotic supplementation in chronic kidney disease: a double-blind, randomized, Placebo-controlled Trial. J Ren Nutr. 2018;28:28–36.PubMedCrossRef Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, et al. Probiotic supplementation in chronic kidney disease: a double-blind, randomized, Placebo-controlled Trial. J Ren Nutr. 2018;28:28–36.PubMedCrossRef
82.
go back to reference Rossi M, Klein K, Johnson DW, Campbell KL. Pre-, pro-, and Synbiotics: do they have a role in reducing uremic toxins? A Systematic Review and Meta-Analysis. Int J Nephrol. 2012;2012:20.CrossRef Rossi M, Klein K, Johnson DW, Campbell KL. Pre-, pro-, and Synbiotics: do they have a role in reducing uremic toxins? A Systematic Review and Meta-Analysis. Int J Nephrol. 2012;2012:20.CrossRef
83.
go back to reference Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11:223.PubMedPubMedCentralCrossRef Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11:223.PubMedPubMedCentralCrossRef
84.
85.
go back to reference Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.PubMedPubMedCentralCrossRef Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.PubMedPubMedCentralCrossRef
86.
go back to reference Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7:445–54.PubMedPubMedCentralCrossRef Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7:445–54.PubMedPubMedCentralCrossRef
Metadata
Title
The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature
Authors
Jordan Stanford
Karen Charlton
Anita Stefoska-Needham
Rukayat Ibrahim
Kelly Lambert
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2020
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-020-01805-w

Other articles of this Issue 1/2020

BMC Nephrology 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.