Skip to main content
Top
Published in: Molecular Brain 1/2023

Open Access 01-12-2023 | Respiratory Microbiota | Research

The gut microbiota and metabolite profiles are altered in patients with spinal cord injury

Authors: Ganggang Kong, Wenwu Zhang, Siyun Zhang, Jiewen Chen, kejun He, Changming Zhang, Xi Yuan, Baoshu Xie

Published in: Molecular Brain | Issue 1/2023

Login to get access

Abstract

Background

Metabolites secreted by the gut microbiota may play an essential role in microbiota–gut–central nervous system crosstalk. In this study, we explored the changes occurring in the gut microbiota and their metabolites in patients with spinal cord injury (SCI) and analyzed the correlations among them.

Methods

The structure and composition of the gut microbiota derived from fecal samples collected from patients with SCI (n = 11) and matched control individuals (n = 10) were evaluated using 16S rRNA gene sequencing. Additionally, an untargeted metabolomics approach was used to compare the serum metabolite profiles of both groups. Meanwhile, the association among serum metabolites, the gut microbiota, and clinical parameters (including injury duration and neurological grade) was also analyzed. Finally, metabolites with the potential for use in the treatment of SCI were identified based on the differential metabolite abundance analysis.

Results

The composition of the gut microbiota was different between patients with SCI and healthy controls. At the genus level, compared with the control group, the abundance of UBA1819, Anaerostignum, Eggerthella, and Enterococcus was significantly increased in the SCI group, whereas that of Faecalibacterium, Blautia, EscherichiaShigella, Agathobacter, Collinsella, Dorea, Ruminococcus, Fusicatenibacter, and Eubacterium was decreased. Forty-one named metabolites displayed significant differential abundance between SCI patients and healthy controls, including 18 that were upregulated and 23 that were downregulated. Correlation analysis further indicated that the variation in gut microbiota abundance was associated with changes in serum metabolite levels, suggesting that gut dysbiosis is an important cause of metabolic disorders in SCI. Finally, gut dysbiosis and serum metabolite dysregulation was found to be associated with injury duration and severity of motor dysfunction after SCI.

Conclusions

We present a comprehensive landscape of the gut microbiota and metabolite profiles in patients with SCI and provide evidence that their interaction plays a role in the pathogenesis of SCI. Furthermore, our findings suggested that uridine, hypoxanthine, PC(18:2/0:0), and kojic acid may be important therapeutic targets for the treatment of this condition.
Literature
2.
go back to reference Trgovcevic S, Milicevic M, Nedovic G, Jovanic G. Health condition and quality of life in persons with spinal cord injury. Iran J Public Health. 2014;43:1229–38.PubMedPubMedCentral Trgovcevic S, Milicevic M, Nedovic G, Jovanic G. Health condition and quality of life in persons with spinal cord injury. Iran J Public Health. 2014;43:1229–38.PubMedPubMedCentral
3.
go back to reference Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther. 2002;82:601–12.PubMedCrossRef Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther. 2002;82:601–12.PubMedCrossRef
4.
go back to reference Krassioukov A, Eng JJ, Claxton G, Sakakibara BM, Shum S. Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord. 2010;48:718–33.PubMedPubMedCentralCrossRef Krassioukov A, Eng JJ, Claxton G, Sakakibara BM, Shum S. Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord. 2010;48:718–33.PubMedPubMedCentralCrossRef
5.
go back to reference Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain–gut–microbiome. Axis Cell Mol Gastroenterol Hepatol. 2018;6:133–48.PubMedCrossRef Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain–gut–microbiome. Axis Cell Mol Gastroenterol Hepatol. 2018;6:133–48.PubMedCrossRef
6.
go back to reference Zhang C, Zhang W, Zhang J, Jing Y, Yang M, Du L, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med. 2018;16:353.PubMedPubMedCentralCrossRef Zhang C, Zhang W, Zhang J, Jing Y, Yang M, Du L, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med. 2018;16:353.PubMedPubMedCentralCrossRef
7.
go back to reference Delgado JR, Benakis C. The gut ecosystem: a critical player in stroke. Neuromol Med. 2021;23:236–41.CrossRef Delgado JR, Benakis C. The gut ecosystem: a critical player in stroke. Neuromol Med. 2021;23:236–41.CrossRef
9.
go back to reference Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.PubMedCrossRef Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.PubMedCrossRef
10.
go back to reference Jarbrink-Sehgal E, Andreasson A. The gut microbiota and mental health in adults. Curr Opin Neurobiol. 2020;62:102–14.PubMedCrossRef Jarbrink-Sehgal E, Andreasson A. The gut microbiota and mental health in adults. Curr Opin Neurobiol. 2020;62:102–14.PubMedCrossRef
11.
go back to reference Sanchez B, Delgado S, Blanco-Miguez A, Lourenco A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61:1600240.CrossRef Sanchez B, Delgado S, Blanco-Miguez A, Lourenco A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61:1600240.CrossRef
12.
go back to reference Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.PubMedCrossRef Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.PubMedCrossRef
14.
go back to reference Jing Y, Yu Y, Bai F, Wang L, Yang D, Zhang C, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome. 2021;9:59.PubMedPubMedCentralCrossRef Jing Y, Yu Y, Bai F, Wang L, Yang D, Zhang C, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome. 2021;9:59.PubMedPubMedCentralCrossRef
15.
go back to reference Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.PubMedPubMedCentralCrossRef Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.PubMedPubMedCentralCrossRef
16.
go back to reference Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2016;44:951–3.PubMedCrossRef Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2016;44:951–3.PubMedCrossRef
17.
go back to reference Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M. Intestinal microbiota in patients with spinal cord injury. PLoS ONE. 2016;11: e145878.CrossRef Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M. Intestinal microbiota in patients with spinal cord injury. PLoS ONE. 2016;11: e145878.CrossRef
18.
19.
go back to reference Rong Z, Huang Y, Cai H, Chen M, Wang H, Liu G, et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway. Front Nutr. 2021;8: 702659.PubMedPubMedCentralCrossRef Rong Z, Huang Y, Cai H, Chen M, Wang H, Liu G, et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway. Front Nutr. 2021;8: 702659.PubMedPubMedCentralCrossRef
20.
go back to reference Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78.PubMedCrossRef Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78.PubMedCrossRef
21.
go back to reference Needham BD, Funabashi M, Adame MD, Wang Z, Boktor JC, Haney J, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature. 2022;602:647–53.PubMedPubMedCentralCrossRef Needham BD, Funabashi M, Adame MD, Wang Z, Boktor JC, Haney J, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature. 2022;602:647–53.PubMedPubMedCentralCrossRef
22.
go back to reference Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–46.PubMedPubMedCentralCrossRef Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–46.PubMedPubMedCentralCrossRef
23.
go back to reference Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL, Fraser JA, et al. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. MBio. 2015;6:e1315–40.CrossRef Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL, Fraser JA, et al. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. MBio. 2015;6:e1315–40.CrossRef
24.
go back to reference Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20:40–54.PubMedCrossRef Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20:40–54.PubMedCrossRef
25.
go back to reference Schmidt E, Torres-Espin A, Raposo P, Madsen KL, Kigerl KA, Popovich PG, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE. 2020;15: e226128.CrossRef Schmidt E, Torres-Espin A, Raposo P, Madsen KL, Kigerl KA, Popovich PG, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE. 2020;15: e226128.CrossRef
26.
go back to reference Jing Y, Yang D, Bai F, Zhang C, Qin C, Li D, et al. Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice. J Neurotrauma. 2019;36:2646–64.PubMedCrossRef Jing Y, Yang D, Bai F, Zhang C, Qin C, Li D, et al. Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice. J Neurotrauma. 2019;36:2646–64.PubMedCrossRef
27.
28.
go back to reference Tyler PT, Grandhi R. Gut microbiota and neurologic diseases and injuries. Adv Exp Med Biol. 2020;1238:73–91.CrossRef Tyler PT, Grandhi R. Gut microbiota and neurologic diseases and injuries. Adv Exp Med Biol. 2020;1238:73–91.CrossRef
29.
go back to reference Bazzocchi G, Turroni S, Bulzamini MC, D’Amico F, Bava A, Castiglioni M, et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep. 2021;11:12743.PubMedPubMedCentralCrossRef Bazzocchi G, Turroni S, Bulzamini MC, D’Amico F, Bava A, Castiglioni M, et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep. 2021;11:12743.PubMedPubMedCentralCrossRef
30.
go back to reference Myers SA, Gobejishvili L, Saraswat OS, Garrett WC, Andres KR, Riegler AS, et al. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis. 2019;124:353–63.PubMedCrossRef Myers SA, Gobejishvili L, Saraswat OS, Garrett WC, Andres KR, Riegler AS, et al. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis. 2019;124:353–63.PubMedCrossRef
31.
go back to reference O’Connor G, Jeffrey E, Madorma D, Marcillo A, Abreu MT, Deo SK, et al. Investigation of microbiota alterations and intestinal inflammation post-spinal cord injury in rat model. J Neurotrauma. 2018;35:2159–66.PubMedPubMedCentralCrossRef O’Connor G, Jeffrey E, Madorma D, Marcillo A, Abreu MT, Deo SK, et al. Investigation of microbiota alterations and intestinal inflammation post-spinal cord injury in rat model. J Neurotrauma. 2018;35:2159–66.PubMedPubMedCentralCrossRef
32.
go back to reference Yu B, Qiu H, Cheng S, Ye F, Li J, Chen S, et al. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case–control study in a rehabilitation setting. Bioengineered. 2021;12:4489–99.PubMedPubMedCentralCrossRef Yu B, Qiu H, Cheng S, Ye F, Li J, Chen S, et al. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case–control study in a rehabilitation setting. Bioengineered. 2021;12:4489–99.PubMedPubMedCentralCrossRef
33.
go back to reference Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108.PubMedPubMedCentralCrossRef Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108.PubMedPubMedCentralCrossRef
34.
go back to reference Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile—part I. J Spinal Cord Med. 2014;37:693–702.PubMedPubMedCentralCrossRef Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile—part I. J Spinal Cord Med. 2014;37:693–702.PubMedPubMedCentralCrossRef
35.
go back to reference Hu Q, Niu Y, Yang Y, Mao Q, Lu Y, Ran H, et al. Polydextrose alleviates adipose tissue inflammation and modulates the gut microbiota in high-fat diet-fed mice. Front Pharmacol. 2021;12: 795483.PubMedCrossRef Hu Q, Niu Y, Yang Y, Mao Q, Lu Y, Ran H, et al. Polydextrose alleviates adipose tissue inflammation and modulates the gut microbiota in high-fat diet-fed mice. Front Pharmacol. 2021;12: 795483.PubMedCrossRef
36.
go back to reference McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9:1348.PubMedPubMedCentralCrossRef McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9:1348.PubMedPubMedCentralCrossRef
37.
go back to reference Gacias M, Gaspari S, Santos P M, Tamburini S, Andrade M, Zhang F, Shen N et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. elife. 2016; 5 Gacias M, Gaspari S, Santos P M, Tamburini S, Andrade M, Zhang F, Shen N et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. elife. 2016; 5
38.
go back to reference Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, et al. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered. 2022;13:3724–38.PubMedPubMedCentralCrossRef Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, et al. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered. 2022;13:3724–38.PubMedPubMedCentralCrossRef
39.
go back to reference McEvilly M, Popelas C, Tremmel B. Use of uridine triacetate for the management of fluorouracil overdose. Am J Health Syst Pharm. 2011;68:1806–9.PubMedCrossRef McEvilly M, Popelas C, Tremmel B. Use of uridine triacetate for the management of fluorouracil overdose. Am J Health Syst Pharm. 2011;68:1806–9.PubMedCrossRef
40.
go back to reference Gallai V, Mazzotta G, Montesi S, Sarchielli P, Del GF. Effects of uridine in the treatment of diabetic neuropathy: an electrophysiological study. Acta Neurol Scand. 1992;86:3–7.PubMedCrossRef Gallai V, Mazzotta G, Montesi S, Sarchielli P, Del GF. Effects of uridine in the treatment of diabetic neuropathy: an electrophysiological study. Acta Neurol Scand. 1992;86:3–7.PubMedCrossRef
41.
go back to reference Mironova GD, Khrenov MO, Talanov EY, Glushkova OV, Parfenyuk SB, Novoselova TV, et al. The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Arch Biochem Biophys. 2018;654:70–6.PubMedCrossRef Mironova GD, Khrenov MO, Talanov EY, Glushkova OV, Parfenyuk SB, Novoselova TV, et al. The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Arch Biochem Biophys. 2018;654:70–6.PubMedCrossRef
42.
go back to reference Liu Z, Li W, Geng L, Sun L, Wang Q, Yu Y, et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov. 2022;8:6.PubMedPubMedCentralCrossRef Liu Z, Li W, Geng L, Sun L, Wang Q, Yu Y, et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov. 2022;8:6.PubMedPubMedCentralCrossRef
43.
go back to reference Biasibetti H, Pierozan P, Rodrigues AF, Manfredini V, Wyse A. Hypoxanthine intrastriatal administration alters neuroinflammatory profile and redox status in striatum of infant and young adult rats. Mol Neurobiol. 2017;54:2790–800.PubMedCrossRef Biasibetti H, Pierozan P, Rodrigues AF, Manfredini V, Wyse A. Hypoxanthine intrastriatal administration alters neuroinflammatory profile and redox status in striatum of infant and young adult rats. Mol Neurobiol. 2017;54:2790–800.PubMedCrossRef
44.
go back to reference Kim YJ, Ryu HM, Choi JY, Cho JH, Kim CD, Park SH, et al. Hypoxanthine causes endothelial dysfunction through oxidative stress-induced apoptosis. Biochem Biophys Res Commun. 2017;482:821–7.PubMedCrossRef Kim YJ, Ryu HM, Choi JY, Cho JH, Kim CD, Park SH, et al. Hypoxanthine causes endothelial dysfunction through oxidative stress-induced apoptosis. Biochem Biophys Res Commun. 2017;482:821–7.PubMedCrossRef
45.
go back to reference Khan A, Park TJ, Ikram M, Ahmad S, Ahmad R, Jo MG, et al. Antioxidative and anti-inflammatory effects of kojic acid in abeta-induced mouse model of Alzheimer’s disease. Mol Neurobiol. 2021;58:5127–40.PubMedCrossRef Khan A, Park TJ, Ikram M, Ahmad S, Ahmad R, Jo MG, et al. Antioxidative and anti-inflammatory effects of kojic acid in abeta-induced mouse model of Alzheimer’s disease. Mol Neurobiol. 2021;58:5127–40.PubMedCrossRef
Metadata
Title
The gut microbiota and metabolite profiles are altered in patients with spinal cord injury
Authors
Ganggang Kong
Wenwu Zhang
Siyun Zhang
Jiewen Chen
kejun He
Changming Zhang
Xi Yuan
Baoshu Xie
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2023
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-023-01014-0

Other articles of this Issue 1/2023

Molecular Brain 1/2023 Go to the issue