Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

Resistance of mitochondrial p53 to dominant inhibition

Authors: Kristina Heyne, Katrin Schmitt, Daniel Mueller, Vivienne Armbruester, Pedro Mestres, Klaus Roemer

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Background

Mutation of a tumor suppressor allele leaves the second as backup. Not necessarily so with p53. This homo-tetrameric transcription factor can become contaminated with mutant p53 through hetero-tetramerization. In addition, it can be out-competed by the binding to p53 DNA recognition motifs of transactivation-incompetent isoforms (ΔN and ΔTA-isoforms) of the p53/p63/p73 family of proteins. Countermeasures against such dominant-negative or dominant-inhibitory action might include the evolutionary gain of novel, transactivation-independent tumor suppressor functions by the wild-type monomer.

Results

Here we have studied, mostly in human HCT116 colon adenocarcinoma cells with an intact p53 pathway, the effects of dominant-inhibitory p53 mutants and of Δex2/3p73, a tumor-associated ΔTA-competitor of wild-type p53, on the nuclear transactivation-dependent and extra-nuclear transactivation-independent functions of wild-type p53. We report that mutant p53 and Δex2/3p73, expressed from a single gene copy per cell, interfere with the stress-induced expression of p53-responsive genes but leave the extra-nuclear apoptosis by mitochondrial p53 largely unaffected, although both wild-type and mutant p53 associate with the mitochondria. In accord with these observations, we present evidence that in contrast to nuclear p53 the vast majority of mitochondrial p53, be it wild-type or mutant, is consisting of monomeric protein.

Conclusion

The extra-nuclear p53-dependent apoptosis may constitute a fail-safe mechanism against dominant inhibition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147CrossRefPubMed Vousden KH, Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 2007, 8: 275-283. 10.1038/nrm2147CrossRefPubMed
2.
go back to reference Moll UM, Wolff S, Speidel D, Deppert W: Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17: 631-6. Epub 2005 Oct 13.. 10.1016/j.ceb.2005.09.007CrossRefPubMed Moll UM, Wolff S, Speidel D, Deppert W: Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17: 631-6. Epub 2005 Oct 13.. 10.1016/j.ceb.2005.09.007CrossRefPubMed
3.
go back to reference Chipuk JE, Green DR: Dissecting p53-dependent apoptosis. Cell Death Differ. 2006, 13: 994-1002. 10.1038/sj.cdd.4401908CrossRefPubMed Chipuk JE, Green DR: Dissecting p53-dependent apoptosis. Cell Death Differ. 2006, 13: 994-1002. 10.1038/sj.cdd.4401908CrossRefPubMed
4.
go back to reference Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP: Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003, 4: 321-328. 10.1016/S1535-6108(03)00244-7CrossRefPubMed Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP: Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003, 4: 321-328. 10.1016/S1535-6108(03)00244-7CrossRefPubMed
5.
go back to reference Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003, 302: 1036-8. Epub 2003 Sep 18.. 10.1126/science.1090072CrossRefPubMed Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003, 302: 1036-8. Epub 2003 Sep 18.. 10.1126/science.1090072CrossRefPubMed
6.
go back to reference Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y, Nakao M, Saya H: Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria. J Biol Chem. 2005, 280: 19166-76. Epub 2005 Mar 7.. 10.1074/jbc.M410691200CrossRefPubMed Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y, Nakao M, Saya H: Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria. J Biol Chem. 2005, 280: 19166-76. Epub 2005 Mar 7.. 10.1074/jbc.M410691200CrossRefPubMed
7.
go back to reference Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003, 11: 577-590. 10.1016/S1097-2765(03)00050-9CrossRefPubMed Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003, 11: 577-590. 10.1016/S1097-2765(03)00050-9CrossRefPubMed
8.
go back to reference Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P, Moll UM: WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem. 2006, 281: 8600-6. Epub 2006 Jan 26.. 10.1074/jbc.M507611200CrossRefPubMed Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P, Moll UM: WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem. 2006, 281: 8600-6. Epub 2006 Jan 26.. 10.1074/jbc.M507611200CrossRefPubMed
9.
go back to reference Marchenko ND, Zaika A, Moll UM: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000, 275: 16202-16212. 10.1074/jbc.275.21.16202CrossRefPubMed Marchenko ND, Zaika A, Moll UM: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000, 275: 16202-16212. 10.1074/jbc.275.21.16202CrossRefPubMed
10.
go back to reference Sansome C, Zaika A, Marchenko ND, Moll UM: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 2001, 488: 110-115. 10.1016/S0014-5793(00)02368-1CrossRefPubMed Sansome C, Zaika A, Marchenko ND, Moll UM: Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 2001, 488: 110-115. 10.1016/S0014-5793(00)02368-1CrossRefPubMed
11.
go back to reference Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M: The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003, 33: 357-65. Epub 2003 Feb 3.. 10.1038/ng1093CrossRefPubMed Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M: The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003, 33: 357-65. Epub 2003 Feb 3.. 10.1038/ng1093CrossRefPubMed
12.
go back to reference Leu JI, Dumont P, Hafey M, Murphy ME, George DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004, 6: 443-50. Epub 2004 Apr 11.. 10.1038/ncb1123CrossRefPubMed Leu JI, Dumont P, Hafey M, Murphy ME, George DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004, 6: 443-50. Epub 2004 Apr 11.. 10.1038/ncb1123CrossRefPubMed
13.
go back to reference Erster S, Mihara M, Kim RH, Petrenko O, Moll UM: In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol. 2004, 24: 6728-6741. 10.1128/MCB.24.15.6728-6741.2004PubMedCentralCrossRefPubMed Erster S, Mihara M, Kim RH, Petrenko O, Moll UM: In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol. 2004, 24: 6728-6741. 10.1128/MCB.24.15.6728-6741.2004PubMedCentralCrossRefPubMed
14.
go back to reference Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005, 65: 3745-3750. 10.1158/0008-5472.CAN-04-3835CrossRefPubMed Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK: p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005, 65: 3745-3750. 10.1158/0008-5472.CAN-04-3835CrossRefPubMed
15.
go back to reference Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR: Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004, 303: 1010-1014. 10.1126/science.1092734CrossRefPubMed Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR: Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004, 303: 1010-1014. 10.1126/science.1092734CrossRefPubMed
16.
go back to reference Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005, 309: 1732-1735. 10.1126/science.1114297CrossRefPubMed Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005, 309: 1732-1735. 10.1126/science.1114297CrossRefPubMed
17.
go back to reference Li Y, Prives C: Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function?. Oncogene. 2007, 26: 2220-2225. 10.1038/sj.onc.1210311CrossRefPubMed Li Y, Prives C: Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function?. Oncogene. 2007, 26: 2220-2225. 10.1038/sj.onc.1210311CrossRefPubMed
18.
go back to reference Roemer K: Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem. 1999, 380: 879-887. 10.1515/BC.1999.108CrossRefPubMed Roemer K: Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem. 1999, 380: 879-887. 10.1515/BC.1999.108CrossRefPubMed
19.
go back to reference Iwakuma T, Lozano G: Crippling p53 activities via knock-in mutations in mouse models. Oncogene. 2007, 26: 2177-2184. 10.1038/sj.onc.1210278CrossRefPubMed Iwakuma T, Lozano G: Crippling p53 activities via knock-in mutations in mouse models. Oncogene. 2007, 26: 2177-2184. 10.1038/sj.onc.1210278CrossRefPubMed
20.
go back to reference Miller FD, Kaplan DR: To die or not to die: neurons and p63. Cell Cycle. 2007, 6: 312-7. Epub 2007 Feb 3..CrossRefPubMed Miller FD, Kaplan DR: To die or not to die: neurons and p63. Cell Cycle. 2007, 6: 312-7. Epub 2007 Feb 3..CrossRefPubMed
21.
go back to reference Stiewe T, Theseling CC, Putzer BM: Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem. 2002, 277: 14177-85. Epub 2002 Feb 13.. 10.1074/jbc.M200480200CrossRefPubMed Stiewe T, Theseling CC, Putzer BM: Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem. 2002, 277: 14177-85. Epub 2002 Feb 13.. 10.1074/jbc.M200480200CrossRefPubMed
22.
go back to reference Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998, 282: 1497-1501. 10.1126/science.282.5393.1497CrossRefPubMed Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998, 282: 1497-1501. 10.1126/science.282.5393.1497CrossRefPubMed
23.
go back to reference Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104: 263-269. 10.1172/JCI6863PubMedCentralCrossRefPubMed Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104: 263-269. 10.1172/JCI6863PubMedCentralCrossRefPubMed
24.
go back to reference Kaeser MD, Pebernard S, Iggo RD: Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem. 2004, 279: 7598-605. Epub 2003 Dec 9.. 10.1074/jbc.M311732200CrossRefPubMed Kaeser MD, Pebernard S, Iggo RD: Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem. 2004, 279: 7598-605. Epub 2003 Dec 9.. 10.1074/jbc.M311732200CrossRefPubMed
25.
go back to reference Mahyar-Roemer M, Fritzsche C, Wagner S, Laue M, Roemer K: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells. Oncogene. 2004, 23: 6226-6236. 10.1038/sj.onc.1207637CrossRefPubMed Mahyar-Roemer M, Fritzsche C, Wagner S, Laue M, Roemer K: Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells. Oncogene. 2004, 23: 6226-6236. 10.1038/sj.onc.1207637CrossRefPubMed
26.
go back to reference Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP: Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol. 1998, 18: 3735-3743.PubMedCentralPubMed Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP: Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol. 1998, 18: 3735-3743.PubMedCentralPubMed
27.
go back to reference Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S: 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene. 1998, 16: 3169-3176. 10.1038/sj.onc.1201857CrossRefPubMed Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S: 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene. 1998, 16: 3169-3176. 10.1038/sj.onc.1201857CrossRefPubMed
28.
go back to reference Mahyar-Roemer M, Roemer K: p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001, 20: 3387-3398. 10.1038/sj.onc.1204440CrossRefPubMed Mahyar-Roemer M, Roemer K: p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001, 20: 3387-3398. 10.1038/sj.onc.1204440CrossRefPubMed
29.
go back to reference Shaulian E, Zauberman A, Ginsberg D, Oren M: Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol. 1992, 12: 5581-5592.PubMedCentralPubMed Shaulian E, Zauberman A, Ginsberg D, Oren M: Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol. 1992, 12: 5581-5592.PubMedCentralPubMed
30.
go back to reference Gottlieb E, Haffner R, von Ruden T, Wagner EF, Oren M: Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO J. 1994, 13: 1368-1374.PubMedCentralPubMed Gottlieb E, Haffner R, von Ruden T, Wagner EF, Oren M: Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO J. 1994, 13: 1368-1374.PubMedCentralPubMed
31.
go back to reference Sheard MA, Uldrijan S, Vojtesek B: Role of p53 in regulating constitutive and X-radiation-inducible CD95 expression and function in carcinoma cells. Cancer Res. 2003, 63: 7176-7184.PubMed Sheard MA, Uldrijan S, Vojtesek B: Role of p53 in regulating constitutive and X-radiation-inducible CD95 expression and function in carcinoma cells. Cancer Res. 2003, 63: 7176-7184.PubMed
32.
go back to reference Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, D'Orazio J, Fung CY, Schanbacher CF, Granter SR, Fisher DE: Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007, 128: 853-864. 10.1016/j.cell.2006.12.045CrossRefPubMed Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, D'Orazio J, Fung CY, Schanbacher CF, Granter SR, Fisher DE: Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007, 128: 853-864. 10.1016/j.cell.2006.12.045CrossRefPubMed
33.
go back to reference Jiang P, Du W, Heese K, Wu M: The Bad Guy Cooperates with Good Cop p53: Bad Is Transcriptionally Up-Regulated by p53 and Forms a Bad/p53 Complex at the Mitochondria To Induce Apoptosis. Mol Cell Biol. 2006, 26: 9071-82. Epub 2006 Sep 25.. 10.1128/MCB.01025-06PubMedCentralCrossRefPubMed Jiang P, Du W, Heese K, Wu M: The Bad Guy Cooperates with Good Cop p53: Bad Is Transcriptionally Up-Regulated by p53 and Forms a Bad/p53 Complex at the Mitochondria To Induce Apoptosis. Mol Cell Biol. 2006, 26: 9071-82. Epub 2006 Sep 25.. 10.1128/MCB.01025-06PubMedCentralCrossRefPubMed
34.
go back to reference Nicholls CD, McLure KG, Shields MA, Lee PW: Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem. 2002, 277: 12937-45. Epub 2002 Jan 22.. 10.1074/jbc.M108815200CrossRefPubMed Nicholls CD, McLure KG, Shields MA, Lee PW: Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem. 2002, 277: 12937-45. Epub 2002 Jan 22.. 10.1074/jbc.M108815200CrossRefPubMed
35.
go back to reference Chan WM, Siu WY, Lau A, Poon RY: How many mutant p53 molecules are needed to inactivate a tetramer?. Mol Cell Biol. 2004, 24: 3536-3551. 10.1128/MCB.24.8.3536-3551.2004PubMedCentralCrossRefPubMed Chan WM, Siu WY, Lau A, Poon RY: How many mutant p53 molecules are needed to inactivate a tetramer?. Mol Cell Biol. 2004, 24: 3536-3551. 10.1128/MCB.24.8.3536-3551.2004PubMedCentralCrossRefPubMed
36.
go back to reference Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z: Structural basis of DNA recognition by p53 tetramers. Mol Cell. 2006, 22: 741-753. 10.1016/j.molcel.2006.05.015CrossRefPubMed Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE, Shakked Z: Structural basis of DNA recognition by p53 tetramers. Mol Cell. 2006, 22: 741-753. 10.1016/j.molcel.2006.05.015CrossRefPubMed
37.
go back to reference Sigal A, Rotter V: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000, 60: 6788-6793.PubMed Sigal A, Rotter V: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000, 60: 6788-6793.PubMed
38.
go back to reference Blagosklonny MV: p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 2000, 14: 1901-1907. 10.1096/fj.99-1078revCrossRefPubMed Blagosklonny MV: p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 2000, 14: 1901-1907. 10.1096/fj.99-1078revCrossRefPubMed
39.
go back to reference Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY, Brachmann RK: Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 2007, 28: 289-98. Epub 2006 Jul 21.. 10.1093/carcin/bgl132CrossRefPubMed Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY, Brachmann RK: Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 2007, 28: 289-98. Epub 2006 Jul 21.. 10.1093/carcin/bgl132CrossRefPubMed
40.
go back to reference Varley JM, Thorncroft M, McGown G, Appleby J, Kelsey AM, Tricker KJ, Evans DG, Birch JM: A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene. 1997, 14: 865-871. 10.1038/sj.onc.1201041CrossRefPubMed Varley JM, Thorncroft M, McGown G, Appleby J, Kelsey AM, Tricker KJ, Evans DG, Birch JM: A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene. 1997, 14: 865-871. 10.1038/sj.onc.1201041CrossRefPubMed
41.
go back to reference Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ, Varley JM: Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene. 1998, 17: 1061-1068. 10.1038/sj.onc.1202033CrossRefPubMed Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ, Varley JM: Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene. 1998, 17: 1061-1068. 10.1038/sj.onc.1202033CrossRefPubMed
42.
go back to reference Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004, 119: 861-872. 10.1016/j.cell.2004.11.006CrossRefPubMed Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004, 119: 861-872. 10.1016/j.cell.2004.11.006CrossRefPubMed
43.
go back to reference Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004, 119: 847-860. 10.1016/j.cell.2004.11.004CrossRefPubMed Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004, 119: 847-860. 10.1016/j.cell.2004.11.004CrossRefPubMed
44.
go back to reference Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D, Donehower LA: Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 1998, 17: 4657-4667. 10.1093/emboj/17.16.4657PubMedCentralCrossRefPubMed Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D, Donehower LA: Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 1998, 17: 4657-4667. 10.1093/emboj/17.16.4657PubMedCentralCrossRefPubMed
45.
go back to reference Palacios G, Moll UM: Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene. 2006, 25: 6133-9. Epub 2006 May 8.. 10.1038/sj.onc.1209641CrossRefPubMed Palacios G, Moll UM: Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene. 2006, 25: 6133-9. Epub 2006 May 8.. 10.1038/sj.onc.1209641CrossRefPubMed
46.
go back to reference Lavelle D, Chen YH, Hankewych M, DeSimone J: Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol. 2001, 68: 170-178. 10.1002/ajh.1174CrossRefPubMed Lavelle D, Chen YH, Hankewych M, DeSimone J: Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol. 2001, 68: 170-178. 10.1002/ajh.1174CrossRefPubMed
47.
go back to reference Marston NJ, Jenkins JR, Vousden KH: Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene. 1995, 10: 1709-1715.PubMed Marston NJ, Jenkins JR, Vousden KH: Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene. 1995, 10: 1709-1715.PubMed
48.
go back to reference Marchenko ND, Wolff S, Erster S, Becker K, Moll UM: Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26: 923-34. Epub 2007 Feb 1.. 10.1038/sj.emboj.7601560PubMedCentralCrossRefPubMed Marchenko ND, Wolff S, Erster S, Becker K, Moll UM: Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26: 923-34. Epub 2007 Feb 1.. 10.1038/sj.emboj.7601560PubMedCentralCrossRefPubMed
49.
go back to reference Atz J, Wagner P, Roemer K: Function, oligomerization, and conformation of tumor-associated p53 proteins with mutated C-terminus. J Cell Biochem. 2000, 76: 572-584. 10.1002/(SICI)1097-4644(20000315)76:4<572::AID-JCB6>3.0.CO;2-6CrossRefPubMed Atz J, Wagner P, Roemer K: Function, oligomerization, and conformation of tumor-associated p53 proteins with mutated C-terminus. J Cell Biochem. 2000, 76: 572-584. 10.1002/(SICI)1097-4644(20000315)76:4<572::AID-JCB6>3.0.CO;2-6CrossRefPubMed
50.
go back to reference Fritzsche C, Zeller G, Knaup KX, Roemer K: No anti-apoptotic effects of single copies of mutant p53 genes in drug-treated tumor cells. Anticancer Drugs. 2004, 15: 679-688. 10.1097/01.cad.0000136878.96680.f5CrossRefPubMed Fritzsche C, Zeller G, Knaup KX, Roemer K: No anti-apoptotic effects of single copies of mutant p53 genes in drug-treated tumor cells. Anticancer Drugs. 2004, 15: 679-688. 10.1097/01.cad.0000136878.96680.f5CrossRefPubMed
51.
go back to reference Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer J, Kremmer E, Roemer K, Mueller-Lantzsch N: Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene. 2000, 19: 4328-4336. 10.1038/sj.onc.1203794CrossRefPubMed Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer J, Kremmer E, Roemer K, Mueller-Lantzsch N: Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene. 2000, 19: 4328-4336. 10.1038/sj.onc.1203794CrossRefPubMed
Metadata
Title
Resistance of mitochondrial p53 to dominant inhibition
Authors
Kristina Heyne
Katrin Schmitt
Daniel Mueller
Vivienne Armbruester
Pedro Mestres
Klaus Roemer
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-54

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine