Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome

Authors: Wen G Jiang, Tracey A Martin, Jonathan M Lewis-Russell, Anthony Douglas-Jones, Lin Ye, Robert E Mansel

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Introduction

To investigate the expression of EPLIN-α, epithelial protein lost in neoplasm, in human breast cancer tissues/cells and investigate the cellular impact of EPLIN-α on breast cancer cells.

Experimental design

EPLIN-α was determined in tumour (n = 120) and normal mammary tissues (n = 32), and cancer cell lines (n = 16). Cell invasion, in vitro and in vivo growth of cells transfected with EPLIN-α were evaluated using in vitro invasion assay, in vitro and in vivo tumour model. Cellular migration was analysed using Electric Cell Impedance Sensing assays.

Results

Low level of EPLIN-α was seen in tumour tissues. Grade-2/3 tumours had significantly lower levels of EPLIN-α compared with grade-1 (p = 0.047 and p = 0.046 vs grade-1, respectively). Patients with poor prognosis had a significantly lower levels of EPLIN-α compared with those with good prognosis (p = 0.0081). Patients who developed recurrence and died of breast cancer had significantly lower levels of EPLIN-α compared with those who remained disease free (p = 0.0003 and p = 0.0008, respectively) (median follow-up 10 years). Patients with high levels of EPLIN-α transcript had a longer survival than those with low levels. Over-expression of EPLIN-α in breast cancer cells by way of transfection rendered cells less invasive, less motile and growing at a slower pace in vitro and in vivo. An ERK inhibitor was shown to be able to abolish the effect of EPLIN expression.

Conclusion

It is concluded that expression of EPLIN-α in breast cancer is down-regulated in breast cancer cells and tissues, a change linked to the prognosis. EPLIN-α acts as a potential tumour suppressor by inhibition of growth and migration of cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chang DD, Park NH, Denny CT, Nelson SF, Pe M: Characterization of transformtion related genes in oral cancer cells. Oncogene. 1998, 16: 1921-1930. 10.1038/sj.onc.1201715CrossRefPubMed Chang DD, Park NH, Denny CT, Nelson SF, Pe M: Characterization of transformtion related genes in oral cancer cells. Oncogene. 1998, 16: 1921-1930. 10.1038/sj.onc.1201715CrossRefPubMed
2.
go back to reference Chen S, Maul RS, Kim HR, Chang DD: Characterization of the human EPLIN (epithelial protein lost in neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene. 2000, 248: 69-76. 10.1016/S0378-1119(00)00144-XCrossRefPubMed Chen S, Maul RS, Kim HR, Chang DD: Characterization of the human EPLIN (epithelial protein lost in neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene. 2000, 248: 69-76. 10.1016/S0378-1119(00)00144-XCrossRefPubMed
3.
go back to reference Maul RS, Chang DD: EPLIN, epithelial protein lost in neoplasm. Oncogene. 1999, 18: 7838-7841. 10.1038/sj.onc.1203206CrossRefPubMed Maul RS, Chang DD: EPLIN, epithelial protein lost in neoplasm. Oncogene. 1999, 18: 7838-7841. 10.1038/sj.onc.1203206CrossRefPubMed
4.
go back to reference Song Y, Maul RS, Gerbin CS, Chang DD: Inhibition of anchorage independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localisation of EPLIN to actin cytoskeleton. Mol Biol Cell. 2002, 13: 1408-1416. 10.1091/mbc.01-08-0414PubMedCentralCrossRefPubMed Song Y, Maul RS, Gerbin CS, Chang DD: Inhibition of anchorage independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localisation of EPLIN to actin cytoskeleton. Mol Biol Cell. 2002, 13: 1408-1416. 10.1091/mbc.01-08-0414PubMedCentralCrossRefPubMed
5.
go back to reference Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD: EPLIN regulates antin dynamics by cross-linking and stabilizing filaments. J Cell Biol. 2003, 160: 399-407. 10.1083/jcb.200212057PubMedCentralCrossRefPubMed Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD: EPLIN regulates antin dynamics by cross-linking and stabilizing filaments. J Cell Biol. 2003, 160: 399-407. 10.1083/jcb.200212057PubMedCentralCrossRefPubMed
6.
go back to reference Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE: Differential expression of the CCN family members Cyr61 from CTGF and Nov in human breast cancer. Endocrine Related Cancers. 2004, 11: 781-791. 10.1677/erc.1.00825.CrossRef Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE: Differential expression of the CCN family members Cyr61 from CTGF and Nov in human breast cancer. Endocrine Related Cancers. 2004, 11: 781-791. 10.1677/erc.1.00825.CrossRef
7.
go back to reference Jiang WG, Watkins G, Lane J, Douglas-Jones A, Cunnick GH, Mokbel M, Mansel RE: Prognostic value of Rho familty and and rho-GDIs in breast cancer. Clin Cancer Res. 2003, 9: 6432-6440.PubMed Jiang WG, Watkins G, Lane J, Douglas-Jones A, Cunnick GH, Mokbel M, Mansel RE: Prognostic value of Rho familty and and rho-GDIs in breast cancer. Clin Cancer Res. 2003, 9: 6432-6440.PubMed
8.
go back to reference Keese CR, Wegener J, Walker SR, Giaever I: Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA. 2004, 101: 1554-9. 10.1073/pnas.0307588100PubMedCentralCrossRefPubMed Keese CR, Wegener J, Walker SR, Giaever I: Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA. 2004, 101: 1554-9. 10.1073/pnas.0307588100PubMedCentralCrossRefPubMed
9.
10.
go back to reference Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, Mokbel K, Mansel RE: Targeting matrilysin and its impact on tumour growth in vivo: the potential implications in breast cancer therapy. Clin Cancer Res. 2005, 11: 6012-9. 10.1158/1078-0432.CCR-05-0275CrossRefPubMed Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, Mokbel K, Mansel RE: Targeting matrilysin and its impact on tumour growth in vivo: the potential implications in breast cancer therapy. Clin Cancer Res. 2005, 11: 6012-9. 10.1158/1078-0432.CCR-05-0275CrossRefPubMed
11.
go back to reference Lee S, Bang S, Song K, Lee I: Differential expression in normal-adenoma-carcinoma sequence suggests complex molecular carcinogenesis in colon. Oncol Rep. 2006, 16: 747-54.PubMed Lee S, Bang S, Song K, Lee I: Differential expression in normal-adenoma-carcinoma sequence suggests complex molecular carcinogenesis in colon. Oncol Rep. 2006, 16: 747-54.PubMed
12.
go back to reference Maul RS, Gerbin CS, Chang DD: Characterization of mouse epithelial protein lost in neoplasm (EPLIN) and comparison of mammalian and zebrafish EPLIN. Gene. 2001, 262: 155-160. 10.1016/S0378-1119(00)00540-0CrossRefPubMed Maul RS, Gerbin CS, Chang DD: Characterization of mouse epithelial protein lost in neoplasm (EPLIN) and comparison of mammalian and zebrafish EPLIN. Gene. 2001, 262: 155-160. 10.1016/S0378-1119(00)00540-0CrossRefPubMed
13.
go back to reference Abe K, Takeichi M: EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA. 2008, 105: 13-9. 10.1073/pnas.0710504105PubMedCentralCrossRefPubMed Abe K, Takeichi M: EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA. 2008, 105: 13-9. 10.1073/pnas.0710504105PubMedCentralCrossRefPubMed
14.
go back to reference Han MY, Kosako H, Watanabe T, Hattori S: Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol. 2007, 27: 8190-204. 10.1128/MCB.00661-07PubMedCentralCrossRefPubMed Han MY, Kosako H, Watanabe T, Hattori S: Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol. 2007, 27: 8190-204. 10.1128/MCB.00661-07PubMedCentralCrossRefPubMed
Metadata
Title
Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome
Authors
Wen G Jiang
Tracey A Martin
Jonathan M Lewis-Russell
Anthony Douglas-Jones
Lin Ye
Robert E Mansel
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-71

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine