Skip to main content
Top
Published in: Current Colorectal Cancer Reports 4/2017

01-08-2017 | Basic Science Foundations in Colorectal Cancer (J Roper, Section Editor)

Resistance Mechanisms to Colorectal Cancer Therapeutics and the Clinical Implications

Authors: Philip Emmerich, Linda Clipson, Dustin A. Deming

Published in: Current Colorectal Cancer Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

Colorectal cancer (CRC) is a leading cause of cancer-related death and additional treatment options are urgently needed. Cytotoxic chemotherapy has been the mainstay of treatment options for patients for many years, including FOLFOX (leucovorin, 5-fluorouracil (5-FU), and oxaliplatin) or FOLFIRI (5-FU, leucovorin, and irinotecan) Here we review the current clinical use of systemic therapies for metastatic CRC and mechanisms of resistance to these agents.

Recent Findings

Biologic therapies, including anti-angiogenic and anti-epidermal growth factor monoclonal antibodies, have shown increased efficacy for patients with metastatic CRC. Most recently, immunotherapies have also been an option for some patients.

Summary

Identification of molecular markers predictive of response or resistance has led to enhanced ability to treat patients with metastatic CRC in a more personalized fashion.
Literature
2.
go back to reference Laufman L, Bukowski RM, Collier MA, et al. A randomized double-blind trial of fluorouracil plus placebo versus fluorouracil plus oral leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 1993;11(10):1888.CrossRefPubMed Laufman L, Bukowski RM, Collier MA, et al. A randomized double-blind trial of fluorouracil plus placebo versus fluorouracil plus oral leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 1993;11(10):1888.CrossRefPubMed
3.
go back to reference Venook A, Niedzwiecki D, Lenz HJ, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2017;32:5s (suppl; abstr LBA3). Venook A, Niedzwiecki D, Lenz HJ, et al. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2017;32:5s (suppl; abstr LBA3).
4.
go back to reference Heidelberger C, Chaudhuri NK, Danenberg PV, et al. Fluorinated pyrimidines: a new class of tumor inhibitory compounds. Nature. 1957;179:663.CrossRefPubMed Heidelberger C, Chaudhuri NK, Danenberg PV, et al. Fluorinated pyrimidines: a new class of tumor inhibitory compounds. Nature. 1957;179:663.CrossRefPubMed
5.
go back to reference de Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol. 1997;15(2):808.CrossRefPubMed de Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol. 1997;15(2):808.CrossRefPubMed
6.
go back to reference Van Kuilenburg ABP. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.CrossRefPubMed Van Kuilenburg ABP. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40(7):939–50.CrossRefPubMed
7.
go back to reference Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48:381–95.CrossRefPubMed Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48:381–95.CrossRefPubMed
8.
go back to reference Salonga D, Danenberg KD, Johnson MR, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6:1322–7.PubMed Salonga D, Danenberg KD, Johnson MR, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6:1322–7.PubMed
9.
go back to reference Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol. 1997;15:3223–9.CrossRefPubMed Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol. 1997;15:3223–9.CrossRefPubMed
10.
go back to reference Lacopetta B, Grieu F, Joseph D, Elsaleh H. A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer. 2001;85:827–30.CrossRef Lacopetta B, Grieu F, Joseph D, Elsaleh H. A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer. 2001;85:827–30.CrossRef
11.
go back to reference Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDC. Cancer Med. 2016;5(4):693–702.CrossRefPubMedPubMedCentral Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDC. Cancer Med. 2016;5(4):693–702.CrossRefPubMedPubMedCentral
12.
go back to reference Tomimaru Y, Eguchi H, Nagano H, Wada H, Tomokuni A, Kobayashi S, et al. MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer. 2010;103(10):1617–26.CrossRefPubMedPubMedCentral Tomimaru Y, Eguchi H, Nagano H, Wada H, Tomokuni A, Kobayashi S, et al. MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer. 2010;103(10):1617–26.CrossRefPubMedPubMedCentral
13.
go back to reference Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA. 2010;107(49):21098–103.CrossRefPubMedPubMedCentral Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA. 2010;107(49):21098–103.CrossRefPubMedPubMedCentral
14.
go back to reference Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22(2):229.CrossRefPubMed Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22(2):229.CrossRefPubMed
15.
go back to reference Woynarowski JM, Faivre S, Herzig MC, Arnett B, Chapman WG, Trevino AV, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharm. 2000;58(5):920–7. Woynarowski JM, Faivre S, Herzig MC, Arnett B, Chapman WG, Trevino AV, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharm. 2000;58(5):920–7.
16.
go back to reference Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, et al. A supset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress. Nat Med. doi:10.1038/nm.4291. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, et al. A supset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress. Nat Med. doi:10.​1038/​nm.​4291.
17.
go back to reference Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer. 2003;39(1):112–9.CrossRefPubMed Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer. 2003;39(1):112–9.CrossRefPubMed
18.
go back to reference Lenz HJ, Lee FC, Yau L, et al. MAVERICC, a phase 2 study of mFOLFOX6-bevacizumab (BV) vs FOLFIRI-BV with biomarker stratification as first-line (1L) chemotherapy (CT) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol. 2016;34:(suppl 4S; abstr 493). Lenz HJ, Lee FC, Yau L, et al. MAVERICC, a phase 2 study of mFOLFOX6-bevacizumab (BV) vs FOLFIRI-BV with biomarker stratification as first-line (1L) chemotherapy (CT) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol. 2016;34:(suppl 4S; abstr 493).
19.
go back to reference Martinez-Balibrea E, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 2015;14(8):1767–76.CrossRefPubMed Martinez-Balibrea E, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 2015;14(8):1767–76.CrossRefPubMed
20.
go back to reference Samimi G, Katano K, Holzer AK, Safaei R, Howell SB. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol. 2004;66:25–32.CrossRefPubMed Samimi G, Katano K, Holzer AK, Safaei R, Howell SB. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol. 2004;66:25–32.CrossRefPubMed
21.
go back to reference Plasencia C, Martinez-Balibrea E, Martinez-Cardus A, Quinn DI, Abad A, Neamati N. Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 2006;29:225–35.PubMed Plasencia C, Martinez-Balibrea E, Martinez-Cardus A, Quinn DI, Abad A, Neamati N. Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 2006;29:225–35.PubMed
22.
go back to reference Martinez-Balibrea E, Martinez-Cardus A, Musulen E, Gines A, Manzano JL, Aranda E, et al. Increased levels of copper efflux transporter ATP7B are associated with poor outcome in colorectal cancer patients receiving oxaliplatin-based chemotherapy. Int J Cancer. 2009;124:2905–10.CrossRefPubMed Martinez-Balibrea E, Martinez-Cardus A, Musulen E, Gines A, Manzano JL, Aranda E, et al. Increased levels of copper efflux transporter ATP7B are associated with poor outcome in colorectal cancer patients receiving oxaliplatin-based chemotherapy. Int J Cancer. 2009;124:2905–10.CrossRefPubMed
23.
go back to reference Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.CrossRefPubMed Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.CrossRefPubMed
25.
go back to reference Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR Eur J Cancer. 1999;35:1343.CrossRefPubMed Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR Eur J Cancer. 1999;35:1343.CrossRefPubMed
26.
go back to reference Van Cutsem E, Lenz HJ, Kohne CH, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33(7):692–700.CrossRefPubMed Van Cutsem E, Lenz HJ, Kohne CH, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33(7):692–700.CrossRefPubMed
27.
go back to reference Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 2015;21(43):12234–48.CrossRefPubMedPubMedCentral Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 2015;21(43):12234–48.CrossRefPubMedPubMedCentral
28.
go back to reference Kawato Y, Aonuma M, Hirota Y, et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187–91.PubMed Kawato Y, Aonuma M, Hirota Y, et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187–91.PubMed
29.
go back to reference Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13:1841–51.CrossRefPubMed Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13:1841–51.CrossRefPubMed
30.
go back to reference van Ark-Otte J, Kedde MA, van der Vijgh WJ, et al. Determinants of CPT-11 and SN-38 activities in human lung cancer cells. Br J Cancer. 1998;77:2171–6.CrossRefPubMedPubMedCentral van Ark-Otte J, Kedde MA, van der Vijgh WJ, et al. Determinants of CPT-11 and SN-38 activities in human lung cancer cells. Br J Cancer. 1998;77:2171–6.CrossRefPubMedPubMedCentral
31.
go back to reference Chu XY, Suzuki H, Ueda K, et al. Active efflux of CPT-11 and its metabolites in human KB-derived cell lines. J Pharmacol Exp Ther. 1999;288:735–41.PubMed Chu XY, Suzuki H, Ueda K, et al. Active efflux of CPT-11 and its metabolites in human KB-derived cell lines. J Pharmacol Exp Ther. 1999;288:735–41.PubMed
32.
go back to reference Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ. Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci. 2007;98:779–89.CrossRefPubMed Temmink OH, Emura T, de Bruin M, Fukushima M, Peters GJ. Therapeutic potential of the dual-targeted TAS-102 formulation in the treatment of gastrointestinal malignancies. Cancer Sci. 2007;98:779–89.CrossRefPubMed
33.
go back to reference Dexter DL, Wolberg WH, Ansfield FJ, Helson L, Heidelberger C. The clinical pharmacology of 5-trifluoromethyl-2′-deoxyuridine. Cancer Res. 1972;32:247–53.PubMed Dexter DL, Wolberg WH, Ansfield FJ, Helson L, Heidelberger C. The clinical pharmacology of 5-trifluoromethyl-2′-deoxyuridine. Cancer Res. 1972;32:247–53.PubMed
34.
go back to reference Fukushima M, Suzuki N, Emura T, Yano S, Kazuno H, Tada Y, et al. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2′-deoxyribonucleosides. Biochem Parmacol. 2000;59:1227–36.CrossRef Fukushima M, Suzuki N, Emura T, Yano S, Kazuno H, Tada Y, et al. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2′-deoxyribonucleosides. Biochem Parmacol. 2000;59:1227–36.CrossRef
35.
go back to reference Murakami Y, Kazano H, Emura T, Tsujimoto H, Suzuki N, Fukushima M. Different mechanisms of acquired resistance to fluorinated pyrimidines in human colorectal cancer cells. Int J Oncol. 2000;17:277–83.PubMed Murakami Y, Kazano H, Emura T, Tsujimoto H, Suzuki N, Fukushima M. Different mechanisms of acquired resistance to fluorinated pyrimidines in human colorectal cancer cells. Int J Oncol. 2000;17:277–83.PubMed
36.
go back to reference Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 2015;372(20):1909–19.CrossRefPubMed Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 2015;372(20):1909–19.CrossRefPubMed
37.
go back to reference Olaf H, et al. Trifluorothymidine resistance is associated with decreased thymidine kinase and equilibrative nucleoside transporter expression or increased secretory phospholipase A2. Mol Cancer Ther. 2010;9(4):1047–57.CrossRef Olaf H, et al. Trifluorothymidine resistance is associated with decreased thymidine kinase and equilibrative nucleoside transporter expression or increased secretory phospholipase A2. Mol Cancer Ther. 2010;9(4):1047–57.CrossRef
38.
go back to reference Fakih M. The evolving role of VEGF-targeted therapies in the treatment of metastatic colorectal cancer. Expert Rev Anticancer Ther. 2013;4:427–38.CrossRef Fakih M. The evolving role of VEGF-targeted therapies in the treatment of metastatic colorectal cancer. Expert Rev Anticancer Ther. 2013;4:427–38.CrossRef
39.
go back to reference Gambardella V, Tarazona N, Cejalvo JM, Roselló S, Certantes A. Clinical pharmacokinetics and pharmacodynamics of ramicirumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2016;12(4):449–56.CrossRefPubMed Gambardella V, Tarazona N, Cejalvo JM, Roselló S, Certantes A. Clinical pharmacokinetics and pharmacodynamics of ramicirumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2016;12(4):449–56.CrossRefPubMed
40.
go back to reference Qu CY, Zheng Y, Zhang Y, Shen F, Cao J, Xu LM. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis. World J Gastroenterol. 2015;21(16):50-72–5080.CrossRef Qu CY, Zheng Y, Zhang Y, Shen F, Cao J, Xu LM. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis. World J Gastroenterol. 2015;21(16):50-72–5080.CrossRef
42.
go back to reference Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.CrossRefPubMed Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.CrossRefPubMed
43.
go back to reference Blouw B, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4:133–46.CrossRefPubMed Blouw B, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003;4:133–46.CrossRefPubMed
44.
go back to reference Kurai J, Chikumi H, Hashimoto K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res. 2007;13(5):1552–61.CrossRefPubMed Kurai J, Chikumi H, Hashimoto K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res. 2007;13(5):1552–61.CrossRefPubMed
45.
go back to reference • Deming D, Holen K. KRAS mutation analysis prior to EGFR-directed therapy for metastatic colorectal cancer: a review and cost analysis. Curr Cancer Ther Rev. 2010;6(4):256–61. This manuscript reviews the ability of KRAS testing to predict resistance to anti-EGFR directed therapies and the immense cost savings as the result of this becoming a standard practice. CrossRef • Deming D, Holen K. KRAS mutation analysis prior to EGFR-directed therapy for metastatic colorectal cancer: a review and cost analysis. Curr Cancer Ther Rev. 2010;6(4):256–61. This manuscript reviews the ability of KRAS testing to predict resistance to anti-EGFR directed therapies and the immense cost savings as the result of this becoming a standard practice. CrossRef
46.
go back to reference Tran NH, Cavalcante LL, Lubner SJ, et al. Precision medicine in colorectal cancer: the molecular profile alters treatment strategies. Ther Adv Med Oncol. 2015;7(5):252–62.CrossRefPubMedPubMedCentral Tran NH, Cavalcante LL, Lubner SJ, et al. Precision medicine in colorectal cancer: the molecular profile alters treatment strategies. Ther Adv Med Oncol. 2015;7(5):252–62.CrossRefPubMedPubMedCentral
47.
go back to reference Al-Shamsi HO, Alhazzani W, Wolff RA. Extended RAS testing in metastatic colorectal cancer-refining the predictive molecular biomarkers. J Gastrointest Oncol. 2015;6(3):314–21.PubMedPubMedCentral Al-Shamsi HO, Alhazzani W, Wolff RA. Extended RAS testing in metastatic colorectal cancer-refining the predictive molecular biomarkers. J Gastrointest Oncol. 2015;6(3):314–21.PubMedPubMedCentral
48.
go back to reference Turk A, Deming DA. BRAF mutation in colorectal cancer. Personalized Medicine in Oncology. 2016;5(1). Turk A, Deming DA. BRAF mutation in colorectal cancer. Personalized Medicine in Oncology. 2016;5(1).
49.
go back to reference • Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2016;34:(suppl; abstr 3504). This study demonstrates the importance of sidedness in the use of anti-EGFR directed therapies for the treatment of metastatic CRC. • Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2016;34:(suppl; abstr 3504). This study demonstrates the importance of sidedness in the use of anti-EGFR directed therapies for the treatment of metastatic CRC.
50.
go back to reference Benson AB 3rd, Venook AP, Cederquist L, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(3):370–98.CrossRef Benson AB 3rd, Venook AP, Cederquist L, et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(3):370–98.CrossRef
51.
go back to reference Lee MS, Advani SM, Morris J, et al. Association of primary site and molecular featurs with progression-free survival and overall survival of metastatic colorectal cancer after anti-epidermal growth factor therapy. J Clin Oncol. 34:(suppl;abstr 3506). Lee MS, Advani SM, Morris J, et al. Association of primary site and molecular featurs with progression-free survival and overall survival of metastatic colorectal cancer after anti-epidermal growth factor therapy. J Clin Oncol. 34:(suppl;abstr 3506).
52.
go back to reference Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Oncol Targets Ther. 2016;9:1899–920.CrossRef Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Oncol Targets Ther. 2016;9:1899–920.CrossRef
53.
go back to reference •• Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. This was the first description of the use of anti-PD1 therapies for the treatment of patients with mismatch repair deficient cancers. CrossRefPubMedPubMedCentral •• Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. This was the first description of the use of anti-PD1 therapies for the treatment of patients with mismatch repair deficient cancers. CrossRefPubMedPubMedCentral
54.
go back to reference Overman MJ, Lonardi S, Leone F, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: update from CheckMate 142. J Clin Oncol. 2017;35:(suppl 4S;abstract 519). Overman MJ, Lonardi S, Leone F, et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: update from CheckMate 142. J Clin Oncol. 2017;35:(suppl 4S;abstract 519).
55.
go back to reference Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121–6.CrossRefPubMed Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121–6.CrossRefPubMed
56.
go back to reference Restifo NP, Marnicola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenber SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100–8.CrossRefPubMedPubMedCentral Restifo NP, Marnicola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenber SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100–8.CrossRefPubMedPubMedCentral
57.
go back to reference Garrido F, Aptsiauri N, Doordujin EM, Lora AMG, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.CrossRefPubMedPubMedCentral Garrido F, Aptsiauri N, Doordujin EM, Lora AMG, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.CrossRefPubMedPubMedCentral
58.
go back to reference Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol. 2015;6(3):307–13.PubMedPubMedCentral Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol. 2015;6(3):307–13.PubMedPubMedCentral
59.
go back to reference Hope C, Foulcer S, Jagodinsky J, et al. Immunoregulatory roles of versican in the myeloma microenvironment. Blood. 2016;128(5):680–5.CrossRefPubMed Hope C, Foulcer S, Jagodinsky J, et al. Immunoregulatory roles of versican in the myeloma microenvironment. Blood. 2016;128(5):680–5.CrossRefPubMed
Metadata
Title
Resistance Mechanisms to Colorectal Cancer Therapeutics and the Clinical Implications
Authors
Philip Emmerich
Linda Clipson
Dustin A. Deming
Publication date
01-08-2017
Publisher
Springer US
Published in
Current Colorectal Cancer Reports / Issue 4/2017
Print ISSN: 1556-3790
Electronic ISSN: 1556-3804
DOI
https://doi.org/10.1007/s11888-017-0374-5

Other articles of this Issue 4/2017

Current Colorectal Cancer Reports 4/2017 Go to the issue

Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)

Clinical Target Volume Definition in Preoperative Radiotherapy of Rectal Carcinoma: a Systematic Review

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

Colonoscopy and Flexible Sigmoidoscopy in Colorectal Cancer Screening and Surveillance

Basic Science Foundations in Colorectal Cancer (J Roper, Section Editor)

Inflammation and Colorectal Cancer

Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)

Biomarkers that Predict Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

Quality Colorectal Cancer Screening: Endoscopic Performance Measures and Beyond

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

The Role of CT Colonography as a Screening Tool for Colorectal Cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine