Skip to main content
Top
Published in: Current Colorectal Cancer Reports 4/2017

01-08-2017 | Basic Science Foundations in Colorectal Cancer (J Roper, Section Editor)

Inflammation and Colorectal Cancer

Authors: Apple G. Long, Emma T. Lundsmith, Kathryn E. Hamilton

Published in: Current Colorectal Cancer Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

Colorectal cancer (CRC) is the fourth most common cancer in both men and women in the USA, resulting in over 55,000 deaths annually. Environmental and genetic factors influence the development of CRC, and inflammation is a critical hallmark of cancer that may arise from a variety of factors. While patients with inflammatory bowel disease (IBD) have a higher risk of developing CRC, sporadic CRCs may engender or be potentiated by inflammation as well. In this review, we focus on recent advances in basic and translational research utilizing murine models to understand the contribution of inflammatory signaling pathways to CRC.

Recent Findings

We discuss advances in the utility of three-dimensional enteroid/colonoid/tumoroid cultures to understand immune-epithelial interactions in CRC, as well as the potential for utilizing patient-derived tumoroids for personalized therapies.

Summary

This review underscores the importance of understanding the complex molecular mechanisms underlying inflammation in sporadic CRC and highlights up-and-coming or new avenues for CRC biomarkers or therapies.
Literature
3.
4.
go back to reference Kern SE, Redston M, Seymour AB, Caldas C, Powell SM, Kornacki S, et al. Molecular genetic profiles of colitis-associated neoplasms. Gastroenterology. 1994;107:420–8.CrossRefPubMed Kern SE, Redston M, Seymour AB, Caldas C, Powell SM, Kornacki S, et al. Molecular genetic profiles of colitis-associated neoplasms. Gastroenterology. 1994;107:420–8.CrossRefPubMed
5.
go back to reference Friis S, Riis AH, Erichsen R, Baron JA, Sorensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55.CrossRefPubMed Friis S, Riis AH, Erichsen R, Baron JA, Sorensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55.CrossRefPubMed
6.
go back to reference Graham DM, Coyle VM, Kennedy RD, Wilson RH. Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Colorectal Cancer Rep. 2016;12:141–50.CrossRefPubMedCentralPubMed Graham DM, Coyle VM, Kennedy RD, Wilson RH. Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Colorectal Cancer Rep. 2016;12:141–50.CrossRefPubMedCentralPubMed
7.
go back to reference •• Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. Describes novel classification system for CRC via coalescence of six independent CRC classification systems into four consensus molecular subtypes (CMS). CrossRefPubMedCentralPubMed •• Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. Describes novel classification system for CRC via coalescence of six independent CRC classification systems into four consensus molecular subtypes (CMS). CrossRefPubMedCentralPubMed
8.
go back to reference • Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–34. Evaluates molecular changes in genetic instability in CRC and describes majority of hypermutated microsatellite instability (MSI) cancers falling into consensus molecular subtype 1 (CMS1, MSI-immune). CrossRefPubMedCentralPubMed • Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–34. Evaluates molecular changes in genetic instability in CRC and describes majority of hypermutated microsatellite instability (MSI) cancers falling into consensus molecular subtype 1 (CMS1, MSI-immune). CrossRefPubMedCentralPubMed
9.
go back to reference Becht E, De Reyniies A, Giraldo NA, Pilati C, Buttard B, Lacroix L, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res. 2016;22:4057–66.CrossRefPubMed Becht E, De Reyniies A, Giraldo NA, Pilati C, Buttard B, Lacroix L, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res. 2016;22:4057–66.CrossRefPubMed
10.
go back to reference Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010;138:2101–14. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010;138:2101–14.
12.
go back to reference Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRefPubMed Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRefPubMed
13.
go back to reference Lasry A, Zinger A, Ben-neriah Y. Review Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17:230–40. Lasry A, Zinger A, Ben-neriah Y. Review Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17:230–40.
14.
go back to reference •• Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8. Demonstrates role of IL-23 in eliciting Th17 pro-tumoriencic responses. PubMedCentralPubMed •• Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8. Demonstrates role of IL-23 in eliciting Th17 pro-tumoriencic responses. PubMedCentralPubMed
15.
go back to reference Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.CrossRefPubMed Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.CrossRefPubMed
16.
go back to reference Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig. 1993;69:238–49.PubMed Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig. 1993;69:238–49.PubMed
17.
go back to reference Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94:965–73.CrossRefPubMed Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94:965–73.CrossRefPubMed
18.
go back to reference Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4 + CD25 + T R cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.CrossRefPubMedCentralPubMed Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4 + CD25 + T R cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.CrossRefPubMedCentralPubMed
19.
go back to reference Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 2013;210:917–31.CrossRefPubMedCentralPubMed Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 2013;210:917–31.CrossRefPubMedCentralPubMed
20.
go back to reference Berg DJ, Davidson N, Kühn R, Müller W, Menon S, Holland G, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4 ϩ TH1-like responses. J Clin Invest. 1996;98(4):1010–20.CrossRefPubMedCentralPubMed Berg DJ, Davidson N, Kühn R, Müller W, Menon S, Holland G, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4 ϩ TH1-like responses. J Clin Invest. 1996;98(4):1010–20.CrossRefPubMedCentralPubMed
21.
go back to reference Davidson NJ, Leach MW, Fort MM, Thompson-snipes L, Kiihnfl R, Mi W, et al. T helper cell 1-type C D 4 + T cells, but not B cells mediate colitis in interleukin 10-deficient mice. J Exp Med 1996;184:241–51. Davidson NJ, Leach MW, Fort MM, Thompson-snipes L, Kiihnfl R, Mi W, et al. T helper cell 1-type C D 4 + T cells, but not B cells mediate colitis in interleukin 10-deficient mice. J Exp Med 1996;184:241–51.
22.
go back to reference Su L, Kinzler KW, Vogelstein B, Preisinger AC, Moser R, Luongo C, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC Gene Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2876870 Multiple intestinal neoplasia caused by a mutation. 1992;256:668–70. Su L, Kinzler KW, Vogelstein B, Preisinger AC, Moser R, Luongo C, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC Gene Published by: American Association for the Advancement of Science Stable URL: http://​www.​jstor.​org/​stable/​2876870 Multiple intestinal neoplasia caused by a mutation. 1992;256:668–70.
23.
go back to reference Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E, et al. Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol. 2005;6:800–9.CrossRefPubMedCentralPubMed Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E, et al. Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol. 2005;6:800–9.CrossRefPubMedCentralPubMed
24.
go back to reference Cheung AF, Carter AM, Kostova KK, Woodruff JF, Crowley D, Bronson RT, et al. Complete deletion of Apc results in severe polyposis in mice. Oncogene. 2010;29:1857–64.CrossRefPubMed Cheung AF, Carter AM, Kostova KK, Woodruff JF, Crowley D, Bronson RT, et al. Complete deletion of Apc results in severe polyposis in mice. Oncogene. 2010;29:1857–64.CrossRefPubMed
25.
go back to reference Smits R, Van Oordt WVH, Luz A, Zurcher C, Jagmohan-Changur S, Breukel C, et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology. 1998;114:275–83.CrossRefPubMed Smits R, Van Oordt WVH, Luz A, Zurcher C, Jagmohan-Changur S, Breukel C, et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology. 1998;114:275–83.CrossRefPubMed
26.
go back to reference Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.CrossRefPubMed Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.CrossRefPubMed
27.
go back to reference Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich J, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566–78.CrossRefPubMedCentralPubMed Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich J, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566–78.CrossRefPubMedCentralPubMed
28.
go back to reference Dennis KL, Saadalla A, Blatner NR, Wang S, Venkateswaran V, Gounari F, et al. T-cell expression of IL10 is essential for tumor immune surveillance in the small intestine. Cancer Immunol Res. 2015;3:806–15.CrossRefPubMedCentralPubMed Dennis KL, Saadalla A, Blatner NR, Wang S, Venkateswaran V, Gounari F, et al. T-cell expression of IL10 is essential for tumor immune surveillance in the small intestine. Cancer Immunol Res. 2015;3:806–15.CrossRefPubMedCentralPubMed
29.
go back to reference •• Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, et al. Adenomatous polyps are driven by microbe-instigated focal in flammation and are controlled by IL-10-producing T cells. Cancer Res. 2013;73(19):5905–13. Described influence of microbiota on eliciting IL-10 response and requirement of IL-10 to donwregulate tumorigenesis. CrossRefPubMedCentralPubMed •• Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, et al. Adenomatous polyps are driven by microbe-instigated focal in flammation and are controlled by IL-10-producing T cells. Cancer Res. 2013;73(19):5905–13. Described influence of microbiota on eliciting IL-10 response and requirement of IL-10 to donwregulate tumorigenesis. CrossRefPubMedCentralPubMed
30.
go back to reference Wang L, Wang Y, Song Z, Chu J, Qu X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interf Cytokine Res. 2015;35:273–80. Wang L, Wang Y, Song Z, Chu J, Qu X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interf Cytokine Res. 2015;35:273–80.
31.
go back to reference Tjandra SS, Hsu C, Goh I, Gurung A, Poon R, Nadesan P, et al. IFN-Beta signaling positively regulates tumorigenesis in aggressive fibromatosis, potentially by modulating mesenchymal progenitors. Cancer Res. 2007;67:7124–31.CrossRefPubMed Tjandra SS, Hsu C, Goh I, Gurung A, Poon R, Nadesan P, et al. IFN-Beta signaling positively regulates tumorigenesis in aggressive fibromatosis, potentially by modulating mesenchymal progenitors. Cancer Res. 2007;67:7124–31.CrossRefPubMed
32.
go back to reference •• Katlinski KV, Gui J, Katlinskaya YV, Koumenis C, Rui H, Fuchs SY. Inactivation of interferon receptor promotes the establishment of immune privileged tumor article inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell. 2017;31:194–207. Demonstrates that tumor cells can downregulate type I interferon receptors to reduce effectiveness of PD-1 blockade. Stabilization of INFRa decreases tumor size and incidence. CrossRefPubMed •• Katlinski KV, Gui J, Katlinskaya YV, Koumenis C, Rui H, Fuchs SY. Inactivation of interferon receptor promotes the establishment of immune privileged tumor article inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell. 2017;31:194–207. Demonstrates that tumor cells can downregulate type I interferon receptors to reduce effectiveness of PD-1 blockade. Stabilization of INFRa decreases tumor size and incidence. CrossRefPubMed
33.
go back to reference Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J, et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 2013;40:140–52.CrossRef Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J, et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 2013;40:140–52.CrossRef
34.
go back to reference Richter C, Herrero San Juan M, Weigmann B, Bergis D, Dauber K, Muders MH, et al. Defective IL-23/IL-17 Axis protects p47phox−/− mice from colon cancer. Front Immunol. 2017;8:1–10.CrossRef Richter C, Herrero San Juan M, Weigmann B, Bergis D, Dauber K, Muders MH, et al. Defective IL-23/IL-17 Axis protects p47phox−/− mice from colon cancer. Front Immunol. 2017;8:1–10.CrossRef
35.
go back to reference Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118:560–70.PubMedCentralPubMed Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118:560–70.PubMedCentralPubMed
36.
go back to reference Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated Colon cancer with ulcerative colitis-like features. PLoS One. 2012;7:e41797.CrossRefPubMedCentralPubMed Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated Colon cancer with ulcerative colitis-like features. PLoS One. 2012;7:e41797.CrossRefPubMedCentralPubMed
37.
go back to reference Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci Trans Med. 2012;4:164ra159.CrossRef Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci Trans Med. 2012;4:164ra159.CrossRef
38.
go back to reference Greten FR, Eckmann L, Greten TF, Park JM, Li Z, Egan LJ, et al. IKK-beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.CrossRefPubMed Greten FR, Eckmann L, Greten TF, Park JM, Li Z, Egan LJ, et al. IKK-beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.CrossRefPubMed
39.
go back to reference Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J, Wang Y. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci. 2012;109:14007–12.CrossRefPubMedCentralPubMed Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J, Wang Y. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci. 2012;109:14007–12.CrossRefPubMedCentralPubMed
40.
go back to reference Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med. 2015;212:2235–51.CrossRefPubMedCentralPubMed Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med. 2015;212:2235–51.CrossRefPubMedCentralPubMed
41.
go back to reference Grivennikov S, Karin E, Terzic J, Mucida D, Yu G, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.CrossRefPubMedCentralPubMed Grivennikov S, Karin E, Terzic J, Mucida D, Yu G, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.CrossRefPubMedCentralPubMed
42.
go back to reference Baltgalvis KA, Berger FG, Pena MMO, Davis JM, Muga SJ, Carson JA, et al. Interleukin-6 and cachexia in Apc min /+ mice. Am J Physiol Regul Integr Comp Physiol. 2008;294:393–401.CrossRef Baltgalvis KA, Berger FG, Pena MMO, Davis JM, Muga SJ, Carson JA, et al. Interleukin-6 and cachexia in Apc min /+ mice. Am J Physiol Regul Integr Comp Physiol. 2008;294:393–401.CrossRef
43.
go back to reference Bollrath J, Phesse TJ, Von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. Article gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.CrossRefPubMed Bollrath J, Phesse TJ, Von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. Article gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.CrossRefPubMed
44.
go back to reference Musteanu M, Blaas L, Mair M, Schlederer M, Bilban M, Tauber S, et al. Stat3 is a negative regulator of intestinal tumor progression in ApcMin mice. Gastroenterology. 2010;138:1003–1011.e5.CrossRefPubMed Musteanu M, Blaas L, Mair M, Schlederer M, Bilban M, Tauber S, et al. Stat3 is a negative regulator of intestinal tumor progression in ApcMin mice. Gastroenterology. 2010;138:1003–1011.e5.CrossRefPubMed
45.
go back to reference Pathria P, Gotthardt D, Prchal-Murphy M, Putz E-M, Holcmann M, Schlederer M, et al. Myeloid STAT3 promotes formation of colitis-associated colorectal cancer in mice. Oncoimmunology. 2015;4:e998529.CrossRefPubMedCentralPubMed Pathria P, Gotthardt D, Prchal-Murphy M, Putz E-M, Holcmann M, Schlederer M, et al. Myeloid STAT3 promotes formation of colitis-associated colorectal cancer in mice. Oncoimmunology. 2015;4:e998529.CrossRefPubMedCentralPubMed
46.
go back to reference Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, et al. Interleukin-11 is the dominant IL-6 family cytokine during Gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–71.CrossRefPubMed Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, et al. Interleukin-11 is the dominant IL-6 family cytokine during Gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–71.CrossRefPubMed
47.
go back to reference Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Apc-delta 716 knockout mice by inhibition of cyclooxygenase 2 ( COX-2). Cell. 1996;87:803–9.CrossRefPubMed Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Apc-delta 716 knockout mice by inhibition of cyclooxygenase 2 ( COX-2). Cell. 1996;87:803–9.CrossRefPubMed
48.
go back to reference Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, et al. Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Res. 2000;60:4705–8.PubMed Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, et al. Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Res. 2000;60:4705–8.PubMed
49.
go back to reference Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.CrossRefPubMed Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.CrossRefPubMed
51.
go back to reference The Cancer Genome Atlas Network. Comprehesive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRefPubMedCentral The Cancer Genome Atlas Network. Comprehesive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRefPubMedCentral
52.
go back to reference Rapaich A, Pitot HC, Dove WF, Moser AMYR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2873632 A dominant mutation that predisposes to multiple intesti. 1990;247:322–4. Rapaich A, Pitot HC, Dove WF, Moser AMYR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse published by: American Association for the Advancement of Science Stable URL: http://​www.​jstor.​org/​stable/​2873632 A dominant mutation that predisposes to multiple intesti. 1990;247:322–4.
53.
go back to reference Stanilov NS, Miteva L, Cirovski G, Stanilova SA. Increased transforming growth factor β and interleukin 10 transcripts in peripheral blood mononuclear cells of colorectal cancer patients. Contemp Oncol. 2016;20:458–62. Stanilov NS, Miteva L, Cirovski G, Stanilova SA. Increased transforming growth factor β and interleukin 10 transcripts in peripheral blood mononuclear cells of colorectal cancer patients. Contemp Oncol. 2016;20:458–62.
54.
go back to reference Glocker E-O, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.CrossRefPubMedCentralPubMed Glocker E-O, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.CrossRefPubMedCentralPubMed
55.
go back to reference • Chung AY, Li Q, Blair SJ, De Jesus M, Dennis KL, Levea C, et al. Oral interleukin-10 alleviates polyposis via neutralization of pathogenic T-regulatory cells. Cancer Res. 2014;74:5377–85. Showed that oral IL-10 administration can downregulate pathogenic Th17 response in order to reduce tumor size and incidence. CrossRefPubMedCentralPubMed • Chung AY, Li Q, Blair SJ, De Jesus M, Dennis KL, Levea C, et al. Oral interleukin-10 alleviates polyposis via neutralization of pathogenic T-regulatory cells. Cancer Res. 2014;74:5377–85. Showed that oral IL-10 administration can downregulate pathogenic Th17 response in order to reduce tumor size and incidence. CrossRefPubMedCentralPubMed
56.
go back to reference Parker BS, Rautela J, Hertzog PJ. Review. Antitumour actions of interferons: implications for cancer therapy. Nature rev. Cancer. 2016;16:131–44.PubMed Parker BS, Rautela J, Hertzog PJ. Review. Antitumour actions of interferons: implications for cancer therapy. Nature rev. Cancer. 2016;16:131–44.PubMed
58.
go back to reference De Simone V, Pallone F, Monteleone G, De Simone V, Pallone F, Monteleone G, et al. Role of T H 17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013;2(12):e26617.CrossRefPubMedCentralPubMed De Simone V, Pallone F, Monteleone G, De Simone V, Pallone F, Monteleone G, et al. Role of T H 17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013;2(12):e26617.CrossRefPubMedCentralPubMed
60.
go back to reference Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. ydT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40:785–800.CrossRefPubMedCentralPubMed Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. ydT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40:785–800.CrossRefPubMedCentralPubMed
61.
go back to reference Heikkila K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer. 2008;44:937–45.CrossRefPubMed Heikkila K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer. 2008;44:937–45.CrossRefPubMed
62.
go back to reference Olsen J, Kirkeby LT, Olsen J, Eiholm S, Jess PER, Gögenur I, et al. High interleukin-6 mRNA expression is a predictor of relapse in colon cancer. Anticancer Res. 2015;2240:2235–40. Olsen J, Kirkeby LT, Olsen J, Eiholm S, Jess PER, Gögenur I, et al. High interleukin-6 mRNA expression is a predictor of relapse in colon cancer. Anticancer Res. 2015;2240:2235–40.
63.
go back to reference Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.CrossRefPubMed Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.CrossRefPubMed
65.
go back to reference Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A, et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 2015;35:1–11. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A, et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 2015;35:1–11.
66.
go back to reference • Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, et al. Stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2013;40:772–84. Demonstrates a role for STAT3 signaling, in order to upregulate stemness genes through DOTL1, a methyltransferase. CrossRef • Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, et al. Stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2013;40:772–84. Demonstrates a role for STAT3 signaling, in order to upregulate stemness genes through DOTL1, a methyltransferase. CrossRef
67.
go back to reference De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.CrossRefPubMed De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.CrossRefPubMed
68.
go back to reference Ben-Neriah Y, Karin M. Review. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011;12:715–23. Ben-Neriah Y, Karin M. Review. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011;12:715–23.
69.
go back to reference Nenci A, Becker C, Wullaert A, Gareus R, Van Loo G, Danese S, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446:557–61.CrossRefPubMed Nenci A, Becker C, Wullaert A, Gareus R, Van Loo G, Danese S, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446:557–61.CrossRefPubMed
70.
go back to reference • Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;23:634–46. Demonstrates that in mutant p53 had oncogenic functions in chronic colitis via NF-κB signaling, in order to promote invasive carcinoma. CrossRefPubMedCentralPubMed • Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;23:634–46. Demonstrates that in mutant p53 had oncogenic functions in chronic colitis via NF-κB signaling, in order to promote invasive carcinoma. CrossRefPubMedCentralPubMed
71.
go back to reference Oshima H, Hioki K, Popivanova BK, Van Rooijen N, Ishikawa TO, Oshima M. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607.CrossRefPubMed Oshima H, Hioki K, Popivanova BK, Van Rooijen N, Ishikawa TO, Oshima M. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607.CrossRefPubMed
72.
go back to reference Zelenay S, Van Der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–70.CrossRefPubMedCentralPubMed Zelenay S, Van Der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–70.CrossRefPubMedCentralPubMed
73.
go back to reference Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.CrossRefPubMedCentralPubMed Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.CrossRefPubMedCentralPubMed
74.
go back to reference Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15:2.CrossRefPubMedCentralPubMed Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15:2.CrossRefPubMedCentralPubMed
75.
go back to reference Diehn M, Cho RW, Lobo NA, Kalisky T, Jo M, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.CrossRefPubMedCentralPubMed Diehn M, Cho RW, Lobo NA, Kalisky T, Jo M, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.CrossRefPubMedCentralPubMed
76.
go back to reference O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, et al. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell. 2012;21:777–92.CrossRefPubMed O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, et al. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell. 2012;21:777–92.CrossRefPubMed
77.
go back to reference Ibrahem S, Al-Ghamdi S, Baloch K, Muhammad B, Fadhil W, Jackson D, et al. STAT3 paradoxically stimulates beta-catenin expression but inhibits beta-catenin function. Int J Exp Pathol. 2014;95:392–400. Ibrahem S, Al-Ghamdi S, Baloch K, Muhammad B, Fadhil W, Jackson D, et al. STAT3 paradoxically stimulates beta-catenin expression but inhibits beta-catenin function. Int J Exp Pathol. 2014;95:392–400.
78.
go back to reference Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011;71:7226–37.CrossRefPubMedCentralPubMed Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011;71:7226–37.CrossRefPubMedCentralPubMed
79.
go back to reference Spitzner M, Roesler B, Bielfeld C, Emons G, Gaedcke J, Wolff HA, et al. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer. 2014;134:997–1007.CrossRefPubMed Spitzner M, Roesler B, Bielfeld C, Emons G, Gaedcke J, Wolff HA, et al. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer. 2014;134:997–1007.CrossRefPubMed
80.
go back to reference Phesse TJ, Buchert M, Stuart E, Flanagan DJ, Faux M, Afshar-Sterle S, et al. Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-β-catenin-mediated intestinal tumor growth and regeneration. Sci Signal. 2014;7:ra92. Phesse TJ, Buchert M, Stuart E, Flanagan DJ, Faux M, Afshar-Sterle S, et al. Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-β-catenin-mediated intestinal tumor growth and regeneration. Sci Signal. 2014;7:ra92.
81.
go back to reference Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.CrossRefPubMedCentralPubMed Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.CrossRefPubMedCentralPubMed
82.
go back to reference Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.CrossRefPubMed Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.CrossRefPubMed
83.
go back to reference Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, et al. ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 2013;12:761–73.CrossRefPubMedCentralPubMed Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, et al. ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 2013;12:761–73.CrossRefPubMedCentralPubMed
84.
go back to reference Du Q, Geller DA. Cross-regulation between Wnt and NF-kB signaling pathways. Immunopathol Dis Ther. 2011;1:1–18. Du Q, Geller DA. Cross-regulation between Wnt and NF-kB signaling pathways. Immunopathol Dis Ther. 2011;1:1–18.
85.
go back to reference Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.CrossRefPubMed Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013;75:289–311.CrossRefPubMed
86.
go back to reference Adolph TE, Tomczak MF, Niederreiter L, Ko H-J, Bock J, Martinez-naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6.PubMedCentralPubMed Adolph TE, Tomczak MF, Niederreiter L, Ko H-J, Bock J, Martinez-naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503:272–6.PubMedCentralPubMed
87.
go back to reference • Feng Y, Sentani K, Wiese A, Sands E, Green M, Bommer GT, et al. Sox9 induction, ectopic paneth cells, and mitotic spindle axis defects in mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. Am J Pathol. 2013;183:493–503. Describes ectopic Paneth cell expression driven by Apc inactivation in Cdx2-CreER(T2) model of colon tumorigenesis. CrossRefPubMedCentralPubMed • Feng Y, Sentani K, Wiese A, Sands E, Green M, Bommer GT, et al. Sox9 induction, ectopic paneth cells, and mitotic spindle axis defects in mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. Am J Pathol. 2013;183:493–503. Describes ectopic Paneth cell expression driven by Apc inactivation in Cdx2-CreER(T2) model of colon tumorigenesis. CrossRefPubMedCentralPubMed
88.
go back to reference Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/beta-catenin/Tcf pathway. Hum Pathol. 2009;40:872–80.CrossRefPubMed Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/beta-catenin/Tcf pathway. Hum Pathol. 2009;40:872–80.CrossRefPubMed
89.
go back to reference Wada R. Proposal of a new hypothesis on the development of colorectal epithelial neoplasia: nonspecific inflammation-colorectal Paneth cell metaplasia-colorectal epithelial neoplasia. Digestion. 2009;79:9–12.CrossRefPubMed Wada R. Proposal of a new hypothesis on the development of colorectal epithelial neoplasia: nonspecific inflammation-colorectal Paneth cell metaplasia-colorectal epithelial neoplasia. Digestion. 2009;79:9–12.CrossRefPubMed
90.
go back to reference Wang D, Peregrina K, Dhima E, Lin EY, Mariadason JM, Augenlicht LH. Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc Natl Acad Sci. 2011;108:10272–7.CrossRefPubMedCentralPubMed Wang D, Peregrina K, Dhima E, Lin EY, Mariadason JM, Augenlicht LH. Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc Natl Acad Sci. 2011;108:10272–7.CrossRefPubMedCentralPubMed
91.
go back to reference Pai RK, Rybicki LA, Goldblum JR, Shen B, Xiao S-Y, Liu X. Paneth cells in colonic adenomas association with male sex and adenoma burden. Am J Surg Pathol. 2013;37:98–103.CrossRefPubMed Pai RK, Rybicki LA, Goldblum JR, Shen B, Xiao S-Y, Liu X. Paneth cells in colonic adenomas association with male sex and adenoma burden. Am J Surg Pathol. 2013;37:98–103.CrossRefPubMed
92.
go back to reference Mahon M, Xu J, Yi X, Liu X, Gao N, Zhang L. Paneth cell in adenomas of the distal colorectum is inversely associated with synchronous advanced adenoma and carcinoma. Sci Rep. 2016;6:26129. doi:10.1038/srep26129. Mahon M, Xu J, Yi X, Liu X, Gao N, Zhang L. Paneth cell in adenomas of the distal colorectum is inversely associated with synchronous advanced adenoma and carcinoma. Sci Rep. 2016;6:26129. doi:10.​1038/​srep26129.
93.
go back to reference • Hilkens J, Timmer NC, Boer M, Ikink GJ, Schewe M, Sacchetti A, et al. RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis. Gut. 2016;66:1095–105. Describes overexpression of R-spondin 3 (RSPO3) in a subset of CRCs and uses a mouse model of conditional Rspo3 expression driven by Lgr5-GFP-CreER(T2) to demonstrate up-regulation of intestinal stem and Paneth cells as well as adenocarcinoma. • Hilkens J, Timmer NC, Boer M, Ikink GJ, Schewe M, Sacchetti A, et al. RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis. Gut. 2016;66:1095–105. Describes overexpression of R-spondin 3 (RSPO3) in a subset of CRCs and uses a mouse model of conditional Rspo3 expression driven by Lgr5-GFP-CreER(T2) to demonstrate up-regulation of intestinal stem and Paneth cells as well as adenocarcinoma.
94.
go back to reference • Nakanishi Y, Reina-Campos M, Nakanishi N, Llado V, Elmen L, Peterson S, et al. Control of Paneth cell fate, intestinal inflammation, and tumorigenesis by PKCλ/Ι. Cell Rep. 2016;16:3297–310. Highlights the role of protein kinase C (PKC) λ/ι in Paneth cell homeostasis, intestinal inflammation, and cancer. CrossRefPubMedCentralPubMed • Nakanishi Y, Reina-Campos M, Nakanishi N, Llado V, Elmen L, Peterson S, et al. Control of Paneth cell fate, intestinal inflammation, and tumorigenesis by PKCλ/Ι. Cell Rep. 2016;16:3297–310. Highlights the role of protein kinase C (PKC) λ/ι in Paneth cell homeostasis, intestinal inflammation, and cancer. CrossRefPubMedCentralPubMed
95.
go back to reference Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.CrossRefPubMed Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.CrossRefPubMed
97.
go back to reference Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.CrossRefPubMed Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.CrossRefPubMed
98.
go back to reference Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.CrossRefPubMed Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.CrossRefPubMed
100.
go back to reference Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43–7.CrossRefPubMed Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43–7.CrossRefPubMed
101.
go back to reference Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest. 2015;125:2646–60. Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest. 2015;125:2646–60.
102.
go back to reference Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 2015;11:e1004901.CrossRefPubMedCentralPubMed Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 2015;11:e1004901.CrossRefPubMedCentralPubMed
103.
go back to reference • Nozaki K, Mochizuki W, Matsumoto Y, Matsumoto T, Fukuda M, Mizutani T, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol. 2016;51:206–13. Describes co-culture of intestinal epithelial organoids with intraepithelial lymphocytes (IELs). CrossRefPubMedCentralPubMed • Nozaki K, Mochizuki W, Matsumoto Y, Matsumoto T, Fukuda M, Mizutani T, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol. 2016;51:206–13. Describes co-culture of intestinal epithelial organoids with intraepithelial lymphocytes (IELs). CrossRefPubMedCentralPubMed
104.
go back to reference Pastuła A, Middelhoff M, Brandtner A, Tobiasch M, Höhl B, Nuber AH, et al. Three-dimensional Gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the Gastrointestinal stem cell niche. Stem Cells Int. 2016;2016:3710836.PubMed Pastuła A, Middelhoff M, Brandtner A, Tobiasch M, Höhl B, Nuber AH, et al. Three-dimensional Gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the Gastrointestinal stem cell niche. Stem Cells Int. 2016;2016:3710836.PubMed
105.
go back to reference Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods. 2015;421:89–95.CrossRefPubMedCentralPubMed Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods. 2015;421:89–95.CrossRefPubMedCentralPubMed
106.
go back to reference Shaffiey SA, Jia H, Keane T, Costello C, Wasserman D, Quidgley M, et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med. 2015;11:rme.15.70. Shaffiey SA, Jia H, Keane T, Costello C, Wasserman D, Quidgley M, et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med. 2015;11:rme.15.70.
Metadata
Title
Inflammation and Colorectal Cancer
Authors
Apple G. Long
Emma T. Lundsmith
Kathryn E. Hamilton
Publication date
01-08-2017
Publisher
Springer US
Published in
Current Colorectal Cancer Reports / Issue 4/2017
Print ISSN: 1556-3790
Electronic ISSN: 1556-3804
DOI
https://doi.org/10.1007/s11888-017-0373-6

Other articles of this Issue 4/2017

Current Colorectal Cancer Reports 4/2017 Go to the issue

Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)

Biomarkers that Predict Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

The Role of CT Colonography as a Screening Tool for Colorectal Cancer

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

Colorectal Cancer Surveillance: What Is the Optimal Frequency of Follow-up and Which Tools Best Predict Recurrence?

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

Quality Colorectal Cancer Screening: Endoscopic Performance Measures and Beyond

Genetic Syndromes, Screening, and Surveillance in Colorectal Cancer (N Kubiliun, Section Editor)

Colonoscopy and Flexible Sigmoidoscopy in Colorectal Cancer Screening and Surveillance

Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)

Clinical Target Volume Definition in Preoperative Radiotherapy of Rectal Carcinoma: a Systematic Review

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine