Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2020

Open Access 01-12-2020 | Research

Residual decontamination chemical agents negatively affect adhesion and proliferation of osteoblast-like cells on implant surface

Authors: Ísis de Fátima Balderrama, Matheus Völz Cardoso, Vitor Toledo Stuani, Rodrigo Cardoso Oliveira, Adriana Arruda Matos, Sebastião Luiz Aguiar Greghi, Adriana Campos Passanezi Sant’Ana

Published in: International Journal of Implant Dentistry | Issue 1/2020

Login to get access

Abstract

Purpose

To investigate the influence of implant surface decontaminated and uncontaminated on osteoblast-like cell adhesion and proliferation

Materials and methods

Commercially available implants of different brands and surface characteristics were selected: Biomet 3i® Nanotite (NT) and Osseotite (OT), Straumann® SLActive (SLA), and Neodent® Acqua Drive (ACQ) and Neoporos Drive CM (CM). Physical and chemical properties of the implants were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and wettability analysis (WETT). Implants were previously contaminated with Aggregatibacter actinomycetemcomitans strains; after that, samples were decontaminated by different chemical methods. Decontaminated (test group; n = 15/type of implant) and uncontaminated (control group; n = 5/type of implant) samples were analyzed according to the number of human osteoblastic osteosarcoma cells (Saos-2) adhered on the implant surface after 24 h and 72 h in SEM images.

Results

ACQ was found to be highly hydrophilic, and NT was the most hydrophobic implant. Increased variation of Saos-2 cell adhesion and proliferation were observed on all test and control groups. Controversially, at the proliferation analysis in 72 h, CM implant was the only implant that showed no significant difference between test and group (p = 0.2833; Tukey’s multiple comparisons test). NT implants showed the greater value of cell proliferation when compared with all types of implant surface (p = 0.0002; Tukey’s multiple comparisons test).

Conclusions

These findings suggest that decontaminated surfaces were able to impair the counting of osteoblast-like cell adhesion and proliferation.
Literature
1.
go back to reference Bränemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977;16:1–132. Bränemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977;16:1–132.
2.
go back to reference Albrektsson T, Sennerby L. Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration. Int J Prosthodont. 1990;3:30–41.PubMed Albrektsson T, Sennerby L. Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration. Int J Prosthodont. 1990;3:30–41.PubMed
3.
4.
go back to reference Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83:529–33.PubMedCrossRef Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83:529–33.PubMedCrossRef
5.
go back to reference Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172–84.PubMedCrossRef Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172–84.PubMedCrossRef
7.
go back to reference Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol. 2013;58:1139–47.PubMedCrossRef Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol. 2013;58:1139–47.PubMedCrossRef
8.
go back to reference Mombelli A, van OOsten MA, Schurch E Jr, et al. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2:145–51.PubMedCrossRef Mombelli A, van OOsten MA, Schurch E Jr, et al. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2:145–51.PubMedCrossRef
9.
go back to reference Canullo L, Peñarrocha-Oltra D, Covani U, et al. Microbiologic and clinical findings of implants in healthy condition and with peri-implantitis. Int J Oral Maxillofac Implants. 2015;30:834–42.PubMedCrossRef Canullo L, Peñarrocha-Oltra D, Covani U, et al. Microbiologic and clinical findings of implants in healthy condition and with peri-implantitis. Int J Oral Maxillofac Implants. 2015;30:834–42.PubMedCrossRef
10.
go back to reference Canullo L, Peñarrocha-Oltra D, Covani U, et al. Clinical and microbiological findings in patients with peri-implantitis: a cross-sectional study. Clin Oral Implants Res. 2016;27(3):376–82.PubMedCrossRef Canullo L, Peñarrocha-Oltra D, Covani U, et al. Clinical and microbiological findings in patients with peri-implantitis: a cross-sectional study. Clin Oral Implants Res. 2016;27(3):376–82.PubMedCrossRef
11.
go back to reference Charalampakis G, Belibasakis GN. Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomics analyses. Virulence. 2015;6:183–7.PubMedPubMedCentralCrossRef Charalampakis G, Belibasakis GN. Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomics analyses. Virulence. 2015;6:183–7.PubMedPubMedCentralCrossRef
12.
go back to reference Badhihi Hauslich L, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013;24:49–56.CrossRef Badhihi Hauslich L, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013;24:49–56.CrossRef
13.
go back to reference Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.PubMedCrossRef Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.PubMedCrossRef
14.
go back to reference Persson LG, Berglundh T, Lindhe J, et al. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 2001;12:595–603.PubMedCrossRef Persson LG, Berglundh T, Lindhe J, et al. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 2001;12:595–603.PubMedCrossRef
15.
go back to reference Lang NP, Berghlundh T, Heitz-Mayfield LJ, et al. Consensus statements and recommended clinical procedures regarding implant survival and complications. Int J Oral Maxillofac Implants. 2004;19:150–4.PubMed Lang NP, Berghlundh T, Heitz-Mayfield LJ, et al. Consensus statements and recommended clinical procedures regarding implant survival and complications. Int J Oral Maxillofac Implants. 2004;19:150–4.PubMed
16.
go back to reference Lindhe J, Meyle J, Group D of European Workshop on Periodontology. Peri-implant diseases: consensus report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35:282–5.PubMedCrossRef Lindhe J, Meyle J, Group D of European Workshop on Periodontology. Peri-implant diseases: consensus report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35:282–5.PubMedCrossRef
17.
go back to reference Schwarz F, Sahm N, Iglhaut G, et al. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol. 2001;38:276–84.CrossRef Schwarz F, Sahm N, Iglhaut G, et al. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol. 2001;38:276–84.CrossRef
18.
go back to reference Kreisler M, Kohnen W, Christoffers AB, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res. 2005;16:36–43.PubMedCrossRef Kreisler M, Kohnen W, Christoffers AB, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res. 2005;16:36–43.PubMedCrossRef
19.
go back to reference Salmeron S, Rezende ML, Consolaro A, et al. Laser therapy as an effective method for implant surface decontamination: a histomorphometric study in rats. J Periodontol. 2013;84:641–9.PubMedCrossRef Salmeron S, Rezende ML, Consolaro A, et al. Laser therapy as an effective method for implant surface decontamination: a histomorphometric study in rats. J Periodontol. 2013;84:641–9.PubMedCrossRef
20.
go back to reference Mellado-Valero A, Buitrago-Vera P, Solá-Ruiz MF, et al. Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal. 2013;18:e869–76.PubMedPubMedCentralCrossRef Mellado-Valero A, Buitrago-Vera P, Solá-Ruiz MF, et al. Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal. 2013;18:e869–76.PubMedPubMedCentralCrossRef
21.
go back to reference Gosau M, Hahnel S, Schwarz F, et al. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implants Res. 2010;21:866–72.PubMed Gosau M, Hahnel S, Schwarz F, et al. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implants Res. 2010;21:866–72.PubMed
22.
go back to reference Valderrama P, Wilson TG Jr. Detoxification of implant surfaces affected by peri-implant disease: an overview of surgical methods. Int J Dent. 2013:740–680. Valderrama P, Wilson TG Jr. Detoxification of implant surfaces affected by peri-implant disease: an overview of surgical methods. Int J Dent. 2013:740–680.
23.
go back to reference Dostie S, Alkadi LT, Owen G, et al. Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm. J Clin Periodontol. 2017;44:403–9.PubMedCrossRef Dostie S, Alkadi LT, Owen G, et al. Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm. J Clin Periodontol. 2017;44:403–9.PubMedCrossRef
24.
go back to reference Strever JM, Lee J, Ealick W, et al. Erbium, Chromium: yttrium-scandium-gallium-garnet laser effectively ablates single-species biofilm on titanium disks without detectable surface damage. J Periodontol. 2017;88:484–92.PubMedCrossRef Strever JM, Lee J, Ealick W, et al. Erbium, Chromium: yttrium-scandium-gallium-garnet laser effectively ablates single-species biofilm on titanium disks without detectable surface damage. J Periodontol. 2017;88:484–92.PubMedCrossRef
25.
go back to reference Freire MO, Sedghizadeh PP, Schaudinn C, et al. Development of an animal model for Aggregatibacter actinomycetemcomtians biofilm-mediated oral osteolytic infection: a preliminary study. J Periodontol. 2011;82:778–89.PubMed Freire MO, Sedghizadeh PP, Schaudinn C, et al. Development of an animal model for Aggregatibacter actinomycetemcomtians biofilm-mediated oral osteolytic infection: a preliminary study. J Periodontol. 2011;82:778–89.PubMed
26.
go back to reference Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42:S158–71.PubMedCrossRef Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42:S158–71.PubMedCrossRef
27.
go back to reference Renvert S, Quirineyn M. Risk indicators for peri-implantitis: a narrative review. Clin Oral Implants Res. 2015;26:15–44.PubMedCrossRef Renvert S, Quirineyn M. Risk indicators for peri-implantitis: a narrative review. Clin Oral Implants Res. 2015;26:15–44.PubMedCrossRef
28.
go back to reference Ungvári K, Pelsöczi IK, Kormos B, et al. Effects of titanium implant surfaces of chemical agents used for the treatment of peri-implantitis. J Biomed Mater Res B: Appl Biomater. 2010;94:222–9. Ungvári K, Pelsöczi IK, Kormos B, et al. Effects of titanium implant surfaces of chemical agents used for the treatment of peri-implantitis. J Biomed Mater Res B: Appl Biomater. 2010;94:222–9.
29.
go back to reference Bürgers R, Witecy C, Hahnel S, et al. The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans and Streptococcus sanguinis. Arch Oral Biol. 2012;57:940–7.PubMedCrossRef Bürgers R, Witecy C, Hahnel S, et al. The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans and Streptococcus sanguinis. Arch Oral Biol. 2012;57:940–7.PubMedCrossRef
30.
go back to reference Lubin J, Hernandez MA, Drukteinis SE, et al. Effectiveness of disinfection therapies and promotion of osteoblast growth on osseotite and nanotite implant surfaces. Implant Dent. 2014;23:426–33.PubMed Lubin J, Hernandez MA, Drukteinis SE, et al. Effectiveness of disinfection therapies and promotion of osteoblast growth on osseotite and nanotite implant surfaces. Implant Dent. 2014;23:426–33.PubMed
31.
go back to reference Sánchez MC, Llama-Palacios A, Fernández E, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30:1161–71.PubMedCrossRef Sánchez MC, Llama-Palacios A, Fernández E, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30:1161–71.PubMedCrossRef
32.
go back to reference Wheelis SE, Gindri IM, Valderrama P, et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition and roughness. Clin Oral Implants Res. 2016;27:329–40.PubMedCrossRef Wheelis SE, Gindri IM, Valderrama P, et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition and roughness. Clin Oral Implants Res. 2016;27:329–40.PubMedCrossRef
33.
go back to reference Kotsakis GA, Lan C, Barbosa J, et al. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J Periodontol. 2016;87:809–19.PubMedCrossRef Kotsakis GA, Lan C, Barbosa J, et al. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J Periodontol. 2016;87:809–19.PubMedCrossRef
34.
go back to reference Rosa MB, Albrektsson T, Francischone CE, et al. Micrometric characterization of the implant surfaces from the five largest companies in Brazil, the second largest worldwide implant market. Int J Oral Maxillofac Implants. 2013;28:358–65.PubMedCrossRef Rosa MB, Albrektsson T, Francischone CE, et al. Micrometric characterization of the implant surfaces from the five largest companies in Brazil, the second largest worldwide implant market. Int J Oral Maxillofac Implants. 2013;28:358–65.PubMedCrossRef
35.
go back to reference Leonhardt A, Berglundh T, Ericsson I, et al. Putative periodontal pathogens on titanium implants and teeth in experimental gingivitis and periodontitis in beagle dogs. Clin Oral Implants Res. 1992;3:112–9.PubMedCrossRef Leonhardt A, Berglundh T, Ericsson I, et al. Putative periodontal pathogens on titanium implants and teeth in experimental gingivitis and periodontitis in beagle dogs. Clin Oral Implants Res. 1992;3:112–9.PubMedCrossRef
36.
go back to reference Zhuang LF, Watt RM, Mattheos N, et al. Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues. Clin Oral Implants Res. 2016;27:13–21.PubMedCrossRef Zhuang LF, Watt RM, Mattheos N, et al. Periodontal and peri-implant microbiota in patients with healthy and inflamed periodontal and peri-implant tissues. Clin Oral Implants Res. 2016;27:13–21.PubMedCrossRef
37.
go back to reference Van Winkelhoff AJ, Wolf JW. Actinobacillus actinomycetemcomitans-associated peri-implantitis in an edentulous patient. A case report. J Clin Periodontol. 2000;27:531–5.PubMedCrossRef Van Winkelhoff AJ, Wolf JW. Actinobacillus actinomycetemcomitans-associated peri-implantitis in an edentulous patient. A case report. J Clin Periodontol. 2000;27:531–5.PubMedCrossRef
38.
go back to reference Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014;16:783–93.PubMedCrossRef Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014;16:783–93.PubMedCrossRef
39.
go back to reference Rimondini L, Farè S, Brambilla E, et al. The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol. 1997;68:556–62.PubMedCrossRef Rimondini L, Farè S, Brambilla E, et al. The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol. 1997;68:556–62.PubMedCrossRef
40.
go back to reference Albrektsson T, Wennerberg A. Oral implant surfaces: part 1 – review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.PubMed Albrektsson T, Wennerberg A. Oral implant surfaces: part 1 – review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.PubMed
41.
go back to reference Smith DC, Pilliar RM, Metson JB, et al. Dental implant materials. 2. Preparative procedures and surface spectroscopic studies. J Biomed Mater Res. 1992;25:1069–84.CrossRef Smith DC, Pilliar RM, Metson JB, et al. Dental implant materials. 2. Preparative procedures and surface spectroscopic studies. J Biomed Mater Res. 1992;25:1069–84.CrossRef
42.
go back to reference Anselme K, Davidson P, Popa AM, et al. The interaction of cells and bacteria with surfaces at the nanometre scale. Acta Biomater. 2010;6:3824–46.PubMedCrossRef Anselme K, Davidson P, Popa AM, et al. The interaction of cells and bacteria with surfaces at the nanometre scale. Acta Biomater. 2010;6:3824–46.PubMedCrossRef
43.
go back to reference Decuzzi P, Ferrari M. Modulating cellular adhesion through nanotopography. Biomaterials. 2010;31:173–9.PubMedCrossRef Decuzzi P, Ferrari M. Modulating cellular adhesion through nanotopography. Biomaterials. 2010;31:173–9.PubMedCrossRef
44.
go back to reference Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reaction on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66.PubMedCrossRef Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reaction on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66.PubMedCrossRef
45.
go back to reference Bornstein MM, Valderrama P, Jones AA, et al. Bone apposition around two different sandblasted and acid titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19:233–41.PubMedCrossRef Bornstein MM, Valderrama P, Jones AA, et al. Bone apposition around two different sandblasted and acid titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19:233–41.PubMedCrossRef
46.
go back to reference Lang NP, Salvi GE, Huynh-Ba G, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Impl Res. 2011;22:349–56.CrossRef Lang NP, Salvi GE, Huynh-Ba G, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Impl Res. 2011;22:349–56.CrossRef
47.
go back to reference Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–18.PubMedPubMedCentralCrossRef Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–18.PubMedPubMedCentralCrossRef
48.
go back to reference Rodriguez y Baena R, Arciola CR, Selan L, et al. Evaluation of bacterial adhesion on machined titanium, Osseotite® and Nanotite® discs. Int J Artif Organs. 2012;35:754–61.PubMedCrossRef Rodriguez y Baena R, Arciola CR, Selan L, et al. Evaluation of bacterial adhesion on machined titanium, Osseotite® and Nanotite® discs. Int J Artif Organs. 2012;35:754–61.PubMedCrossRef
Metadata
Title
Residual decontamination chemical agents negatively affect adhesion and proliferation of osteoblast-like cells on implant surface
Authors
Ísis de Fátima Balderrama
Matheus Völz Cardoso
Vitor Toledo Stuani
Rodrigo Cardoso Oliveira
Adriana Arruda Matos
Sebastião Luiz Aguiar Greghi
Adriana Campos Passanezi Sant’Ana
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2020
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-020-00278-8

Other articles of this Issue 1/2020

International Journal of Implant Dentistry 1/2020 Go to the issue