Skip to main content
Top
Published in: European Radiology 2/2018

01-02-2018 | Neuro

Reperfusion facilitates reversible disruption of the human blood–brain barrier following acute ischaemic stroke

Authors: Chang Liu, Sheng Zhang, Shenqiang Yan, Ruiting Zhang, Feina Shi, Xinfa Ding, Mark Parsons, Min Lou

Published in: European Radiology | Issue 2/2018

Login to get access

Abstract

Objectives

We aimed to detect early changes of the blood–brain barrier permeability (BBBP) in acute ischaemic stroke (AIS), with or without reperfusion, and find out whether BBBP can predict clinical outcomes.

Methods

Consecutive AIS patients imaged with computed tomographic perfusion (CTP) before and 24 h after treatment were included. The relative permeability–surface area product (rPS) was calculated within the hypoperfused region (rPShypo-i), non-hypoperfused region of ischaemic hemisphere (rPSnonhypo-i) and their contralateral mirror regions (rPShypo-c and rPSnonhypo-c). The changes of rPS were analysed using analysis of variance (ANOVA) with repeated measures. Logistic regression was used to identify independent predictors of unfavourable outcome.

Results

Fifty-six patients were included in the analysis, median age was 76 (IQR 62–81) years and 28 (50%) were female. From baseline to 24 h after treatment, rPShypo-i, rPSnonhypo-i and rPShypo-c all decreased significantly. The decreases in rPShypo-i and rPShypo-c were larger in the reperfusion group than non-reperfusion group. The rPShypo-i at follow-up was a predictor for unfavourable outcome (OR 1.131; 95% CI 1.018–1.256; P = 0.022).

Conclusion

Early disruption of BBB in AIS is reversible, particularly when greater reperfusion is achieved. Elevated BBBP at 24 h after treatment, not the pretreatment BBBP, predicts unfavourable outcome.

Key points

Early disruption of blood–brain barrier (BBB) in stroke is reversible after treatment.
The reversibility of BBB permeability is associated with reperfusion.
Unfavourable outcome is associated with BBB permeability at 24 h after treatment.
Contralateral non-ischaemic hemisphere is not ‘normal’ during an acute stroke.
Appendix
Available only for authorised users
Literature
1.
go back to reference The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587CrossRef The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587CrossRef
2.
go back to reference Niego B, Medcalf RL (2014) Plasmin-dependent modulation of the blood–brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 34:1283–1296CrossRefPubMedPubMedCentral Niego B, Medcalf RL (2014) Plasmin-dependent modulation of the blood–brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 34:1283–1296CrossRefPubMedPubMedCentral
3.
go back to reference Hom J, Dankbaar JW, Soares BP et al (2011) Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32:41–48CrossRefPubMed Hom J, Dankbaar JW, Soares BP et al (2011) Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32:41–48CrossRefPubMed
4.
go back to reference Dankbaar JW, Hom J, Schneider T et al (2009) Age- and anatomy-related values of blood–brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol 36:219–227CrossRefPubMed Dankbaar JW, Hom J, Schneider T et al (2009) Age- and anatomy-related values of blood–brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol 36:219–227CrossRefPubMed
5.
go back to reference Dankbaar JW, Hom J, Schneider T et al (2008) Dynamic perfusion CT assessment of the blood–brain barrier permeability: first pass versus delayed acquisition. AJNR Am J Neuroradiol 29:1671–1676CrossRefPubMed Dankbaar JW, Hom J, Schneider T et al (2008) Dynamic perfusion CT assessment of the blood–brain barrier permeability: first pass versus delayed acquisition. AJNR Am J Neuroradiol 29:1671–1676CrossRefPubMed
6.
go back to reference Aviv RI, d'Esterre CD, Murphy BD et al (2009) Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology 250:867–877CrossRefPubMed Aviv RI, d'Esterre CD, Murphy BD et al (2009) Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology 250:867–877CrossRefPubMed
7.
go back to reference Shi Y, Leak RK, Keep RF, Chen J (2016) Translational stroke research on blood–brain barrier damage: challenges, perspectives, and goals. Transl Stroke Res 7:89–92CrossRefPubMedPubMedCentral Shi Y, Leak RK, Keep RF, Chen J (2016) Translational stroke research on blood–brain barrier damage: challenges, perspectives, and goals. Transl Stroke Res 7:89–92CrossRefPubMedPubMedCentral
8.
go back to reference Simpkins AN, Dias C, Leigh R, National Institutes of Health Natural History of Stroke Investigators (2016) Identification of reversible disruption of the human blood–brain barrier following acute ischemia. Stroke 47:2405–2408CrossRefPubMedPubMedCentral Simpkins AN, Dias C, Leigh R, National Institutes of Health Natural History of Stroke Investigators (2016) Identification of reversible disruption of the human blood–brain barrier following acute ischemia. Stroke 47:2405–2408CrossRefPubMedPubMedCentral
9.
go back to reference Garbuzova-Davis S, Haller E, Williams SN et al (2014) Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol 522:3120–3137CrossRefPubMedPubMedCentral Garbuzova-Davis S, Haller E, Williams SN et al (2014) Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol 522:3120–3137CrossRefPubMedPubMedCentral
10.
go back to reference Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG et al (2013) Blood–brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 8:e63553CrossRefPubMedPubMedCentral Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG et al (2013) Blood–brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 8:e63553CrossRefPubMedPubMedCentral
11.
go back to reference Haberg AK, Qu H, Sonnewald U (2009) Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J Neurochem 109:174–181CrossRefPubMed Haberg AK, Qu H, Sonnewald U (2009) Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J Neurochem 109:174–181CrossRefPubMed
12.
go back to reference Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y (2006) In vivo imaging of apoptosis in patients with acute stroke: correlation with blood–brain barrier permeability. Brain Res 1103:13–19CrossRefPubMed Lorberboym M, Blankenberg FG, Sadeh M, Lampl Y (2006) In vivo imaging of apoptosis in patients with acute stroke: correlation with blood–brain barrier permeability. Brain Res 1103:13–19CrossRefPubMed
13.
go back to reference Mari C, Karabiyikoglu M, Goris ML, Tait JF, Yenari MA, Blankenberg FG (2004) Detection of focal hypoxic-ischemic injury and neuronal stress in a rodent model of unilateral MCA occlusion/reperfusion using radiolabeled annexin V. Eur J Nucl Med Mol Imaging 31:733–739CrossRefPubMed Mari C, Karabiyikoglu M, Goris ML, Tait JF, Yenari MA, Blankenberg FG (2004) Detection of focal hypoxic-ischemic injury and neuronal stress in a rodent model of unilateral MCA occlusion/reperfusion using radiolabeled annexin V. Eur J Nucl Med Mol Imaging 31:733–739CrossRefPubMed
14.
go back to reference Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947CrossRefPubMed Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947CrossRefPubMed
15.
go back to reference Horsch AD, Dankbaar JW, van Seeters T et al (2016) Relation between stroke severity, patient characteristics and CT-perfusion derived blood–brain barrier permeability measurements in acute ischemic stroke. Clin Neuroradiol 26:415–421CrossRefPubMed Horsch AD, Dankbaar JW, van Seeters T et al (2016) Relation between stroke severity, patient characteristics and CT-perfusion derived blood–brain barrier permeability measurements in acute ischemic stroke. Clin Neuroradiol 26:415–421CrossRefPubMed
16.
go back to reference St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377CrossRefPubMed St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377CrossRefPubMed
17.
go back to reference Lin L, Bivard A, Levi CR, Parsons MW (2014) Comparison of computed tomographic and magnetic resonance perfusion measurements in acute ischemic stroke: back-to-back quantitative analysis. Stroke 45:1727–1732CrossRefPubMed Lin L, Bivard A, Levi CR, Parsons MW (2014) Comparison of computed tomographic and magnetic resonance perfusion measurements in acute ischemic stroke: back-to-back quantitative analysis. Stroke 45:1727–1732CrossRefPubMed
18.
go back to reference Eilaghi A, Brooks J, d'Esterre C et al (2013) Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke. Radiology 269:240–248CrossRefPubMed Eilaghi A, Brooks J, d'Esterre C et al (2013) Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke. Radiology 269:240–248CrossRefPubMed
19.
go back to reference Yu Y, Han Q, Ding X et al (2016) Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain CT perfusion. Sci Rep 6:20932CrossRefPubMedPubMedCentral Yu Y, Han Q, Ding X et al (2016) Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain CT perfusion. Sci Rep 6:20932CrossRefPubMedPubMedCentral
20.
go back to reference Zhang S, Tang H, Yu YN, Yan SQ, Parsons MW, Lou M (2015) Optimal magnetic resonance perfusion thresholds identifying ischemic penumbra and infarct core: a Chinese population-based study. CNS Neurosci Ther 21:289–295CrossRefPubMed Zhang S, Tang H, Yu YN, Yan SQ, Parsons MW, Lou M (2015) Optimal magnetic resonance perfusion thresholds identifying ischemic penumbra and infarct core: a Chinese population-based study. CNS Neurosci Ther 21:289–295CrossRefPubMed
21.
go back to reference Zhang X, Zhang S, Chen Q, Ding W, Campbell BCV, Lou M (2017) Ipsilateral prominent thalamostriate vein on susceptibility-weighted imaging predicts poor outcome after intravenous thrombolysis in acute ischemic stroke. AJNR Am J Neuroradiol 38:875–881CrossRefPubMed Zhang X, Zhang S, Chen Q, Ding W, Campbell BCV, Lou M (2017) Ipsilateral prominent thalamostriate vein on susceptibility-weighted imaging predicts poor outcome after intravenous thrombolysis in acute ischemic stroke. AJNR Am J Neuroradiol 38:875–881CrossRefPubMed
23.
go back to reference Knowland D, Arac A, Sekiguchi KJ et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82:603–617CrossRefPubMedPubMedCentral Knowland D, Arac A, Sekiguchi KJ et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82:603–617CrossRefPubMedPubMedCentral
24.
go back to reference Shi Y, Zhang L, Pu H et al (2016) Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications 7:10523CrossRefPubMedPubMedCentral Shi Y, Zhang L, Pu H et al (2016) Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications 7:10523CrossRefPubMedPubMedCentral
25.
go back to reference Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709CrossRefPubMed Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709CrossRefPubMed
26.
go back to reference Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W (2012) Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset. Neurobiol Dis 48:309–316CrossRefPubMed Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W (2012) Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset. Neurobiol Dis 48:309–316CrossRefPubMed
27.
go back to reference Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219CrossRefPubMed Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219CrossRefPubMed
29.
go back to reference Lagreze HL, Levine RL, Pedula KL, Nickles RJ, Sunderland JS, Rowe BR (1987) Contralateral flow reduction in unilateral stroke: evidence for transhemispheric diaschisis. Stroke 18:882–886CrossRefPubMed Lagreze HL, Levine RL, Pedula KL, Nickles RJ, Sunderland JS, Rowe BR (1987) Contralateral flow reduction in unilateral stroke: evidence for transhemispheric diaschisis. Stroke 18:882–886CrossRefPubMed
31.
go back to reference Arango-Davila CA, Munoz Ospina BE, Castano DM, Potes L, Umbarila Prieto J (2016) Assessment transcallosal diaschisis in a model of focal cerebral ischemia in rats. Colomb Med (Cali) 47:87–93 Arango-Davila CA, Munoz Ospina BE, Castano DM, Potes L, Umbarila Prieto J (2016) Assessment transcallosal diaschisis in a model of focal cerebral ischemia in rats. Colomb Med (Cali) 47:87–93
32.
go back to reference Nguyen GT, Coulthard A, Wong A et al (2013) Measurement of blood–brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. Neuroimage Clin 2:658–662CrossRefPubMedPubMedCentral Nguyen GT, Coulthard A, Wong A et al (2013) Measurement of blood–brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. Neuroimage Clin 2:658–662CrossRefPubMedPubMedCentral
33.
go back to reference Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M (2009) Optimal duration of acquisition for dynamic perfusion CT assessment of blood–brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 30:1366–1370CrossRefPubMed Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M (2009) Optimal duration of acquisition for dynamic perfusion CT assessment of blood–brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 30:1366–1370CrossRefPubMed
Metadata
Title
Reperfusion facilitates reversible disruption of the human blood–brain barrier following acute ischaemic stroke
Authors
Chang Liu
Sheng Zhang
Shenqiang Yan
Ruiting Zhang
Feina Shi
Xinfa Ding
Mark Parsons
Min Lou
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-5025-3

Other articles of this Issue 2/2018

European Radiology 2/2018 Go to the issue