Skip to main content
Top
Published in: Translational Stroke Research 2/2016

01-04-2016 | Editorial

Translational Stroke Research on Blood-Brain Barrier Damage: Challenges, Perspectives, and Goals

Authors: Yejie Shi, Rehana K. Leak, Richard F. Keep, Jun Chen

Published in: Translational Stroke Research | Issue 2/2016

Login to get access

Excerpt

Over the past few decades, basic and clinical research has identified numerous risk factors for the development of stroke and led to major improvements in health management in the USA. As a result of these efforts, the relative rate of stroke death dropped by 33.7 %, and the actual occurrence of stroke deaths fell by 18.2 % in the decade spanning from 2003 to 2013, according to the American Heart Association. Thus, stroke fell from the fourth to the fifth leading cause of death in 2013, behind heart disease, cancer, chronic lower respiratory diseases, and unintentional injuries. These improvements are largely attributed to superior control of hypertension, diabetes mellitus, high cholesterol, and tobacco use [1]. To date, the treatment of acute ischemic stroke is largely dependent on recanalization using recombinant tissue-type plasminogen activator (tPA) in the appropriate patient population [2, 3]. Encouragingly, recent clinical trials have demonstrated significant benefits for intra-arterial thrombectomy in a subset of acute stroke patients with intracranial large artery occlusion [4]. Despite these improvements in population health and stroke treatment, stroke still remains a leading cause of long-term disability and approximately 795,000 people experience a new or recurrent stroke every year [1]. Thus, basic and clinical investigations of the mechanisms underlying ischemic brain injury must remain an urgent priority in order to promote the discovery of novel therapeutic targets and improve the safety and efficacy of current tPA and thrombectomy treatments. …
Literature
1.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2015. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2015.
2.
go back to reference Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. American heart association/american stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(10):3020–35.CrossRefPubMed Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. American heart association/american stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(10):3020–35.CrossRefPubMed
3.
go back to reference Lapchak PA. Critical early thrombolytic and endovascular reperfusion therapy for acute ischemic stroke victims: a call for adjunct neuroprotection. Transl Stroke Res. 2015;6(5):345–54.CrossRefPubMed Lapchak PA. Critical early thrombolytic and endovascular reperfusion therapy for acute ischemic stroke victims: a call for adjunct neuroprotection. Transl Stroke Res. 2015;6(5):345–54.CrossRefPubMed
4.
go back to reference Grotta JC, Hacke W. Stroke neurologist’s perspective on the new endovascular trials. Stroke. 2015;46(6):1447–52.CrossRefPubMed Grotta JC, Hacke W. Stroke neurologist’s perspective on the new endovascular trials. Stroke. 2015;46(6):1447–52.CrossRefPubMed
5.
go back to reference Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, et al. Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.CrossRefPubMed Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, et al. Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.CrossRefPubMed
6.
go back to reference Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS. 2014;11:18.PubMedCentralCrossRefPubMed Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS. 2014;11:18.PubMedCentralCrossRefPubMed
7.
go back to reference Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y. Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res. 2014;5(4):472–5.PubMedCentralCrossRefPubMed Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y. Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res. 2014;5(4):472–5.PubMedCentralCrossRefPubMed
8.
go back to reference Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res. 2014;5(1):3–16.PubMedCentralCrossRefPubMed Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res. 2014;5(1):3–16.PubMedCentralCrossRefPubMed
9.
go back to reference Audebert HJ, Kukla C, Von Clarmann Claranau S, Kuhn J, Vatankhah B, Schenkel J, et al. Telemedicine for safe and extended use of thrombolysis in stroke: the telemedic pilot project for integrative stroke care (TEMPiS) in Bavaria. Stroke. 2005;36(2):287–91.CrossRefPubMed Audebert HJ, Kukla C, Von Clarmann Claranau S, Kuhn J, Vatankhah B, Schenkel J, et al. Telemedicine for safe and extended use of thrombolysis in stroke: the telemedic pilot project for integrative stroke care (TEMPiS) in Bavaria. Stroke. 2005;36(2):287–91.CrossRefPubMed
10.
go back to reference Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21(19):7724–32.PubMed Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21(19):7724–32.PubMed
11.
go back to reference Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32(9):3044–57.PubMedCentralCrossRefPubMed Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32(9):3044–57.PubMedCentralCrossRefPubMed
12.
go back to reference Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27(4):697–709.PubMed Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27(4):697–709.PubMed
13.
go back to reference Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG, et al. Effect of simvastatin on MMPs and TIMPs in human brain endothelial cells and experimental stroke. Transl Stroke Res. 2015;6(2):156–9.CrossRefPubMed Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG, et al. Effect of simvastatin on MMPs and TIMPs in human brain endothelial cells and experimental stroke. Transl Stroke Res. 2015;6(2):156–9.CrossRefPubMed
14.
go back to reference Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82.PubMedCentralCrossRefPubMed Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82.PubMedCentralCrossRefPubMed
15.
go back to reference Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D. Blood–brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One. 2013;8(2), e56419.PubMedCentralCrossRefPubMed Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D. Blood–brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One. 2013;8(2), e56419.PubMedCentralCrossRefPubMed
16.
go back to reference Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.PubMedCentralCrossRefPubMed Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.PubMedCentralCrossRefPubMed
17.
go back to reference Nahirney PC, Reeson P, Brown CE. Ultrastructural analysis of blood–brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab. 2015. Nahirney PC, Reeson P, Brown CE. Ultrastructural analysis of blood–brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab. 2015.
18.
go back to reference Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X et al. Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. doi:10.1038/ncomms10523 Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X et al. Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. doi:10.​1038/​ncomms10523
19.
go back to reference Lin T, Zeng L, Liu Y, DeFea K, Schwartz MA, Chien S, et al. Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res. 2003;92(12):1296–304.CrossRefPubMed Lin T, Zeng L, Liu Y, DeFea K, Schwartz MA, Chien S, et al. Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res. 2003;92(12):1296–304.CrossRefPubMed
20.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.CrossRefPubMed Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.CrossRefPubMed
21.
go back to reference Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.PubMedCentralCrossRefPubMed Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.PubMedCentralCrossRefPubMed
22.
go back to reference Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.PubMedCentralPubMed Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.PubMedCentralPubMed
23.
go back to reference Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.PubMedCentralCrossRefPubMed Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.PubMedCentralCrossRefPubMed
24.
go back to reference Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962–74.CrossRefPubMed Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962–74.CrossRefPubMed
25.
go back to reference Xiang J, Tang Y, Li C, Su EJ, Lawrence DA, Keep RF. Mechanisms underlying astrocyte endfeet swelling in stroke. Acta Neurochir Suppl. 2016;121:19–22.PubMed Xiang J, Tang Y, Li C, Su EJ, Lawrence DA, Keep RF. Mechanisms underlying astrocyte endfeet swelling in stroke. Acta Neurochir Suppl. 2016;121:19–22.PubMed
26.
go back to reference Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K, et al. Oligodendrocyte precursor cells support blood–brain barrier integrity via TGF-beta signaling. PLoS One. 2014;9(7), e103174.PubMedCentralCrossRefPubMed Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K, et al. Oligodendrocyte precursor cells support blood–brain barrier integrity via TGF-beta signaling. PLoS One. 2014;9(7), e103174.PubMedCentralCrossRefPubMed
27.
go back to reference da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.PubMedCentralCrossRefPubMed da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.PubMedCentralCrossRefPubMed
28.
go back to reference Egashira Y, Hua Y, Keep RF, Xi G. Intercellular cross-talk in intracerebral hemorrhage. Brain Res. 2015;1623:97–109.CrossRefPubMed Egashira Y, Hua Y, Keep RF, Xi G. Intercellular cross-talk in intracerebral hemorrhage. Brain Res. 2015;1623:97–109.CrossRefPubMed
29.
go back to reference Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood–brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5(5):618–26.CrossRefPubMed Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood–brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5(5):618–26.CrossRefPubMed
30.
go back to reference Merali Z, Leung J, Mikulis D, Silver F, Kassner A. Longitudinal assessment of imatinib’s effect on the blood–brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res. 2015;6(1):39–49.CrossRefPubMed Merali Z, Leung J, Mikulis D, Silver F, Kassner A. Longitudinal assessment of imatinib’s effect on the blood–brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res. 2015;6(1):39–49.CrossRefPubMed
32.
go back to reference Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia. 2015;63(12):2198–207.CrossRefPubMed Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia. 2015;63(12):2198–207.CrossRefPubMed
33.
go back to reference Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.PubMedCentralCrossRefPubMed Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.PubMedCentralCrossRefPubMed
34.
go back to reference Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, et al. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res. 2014;5(4):484–90.PubMedCentralCrossRefPubMed Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, et al. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res. 2014;5(4):484–90.PubMedCentralCrossRefPubMed
35.
go back to reference Zhu W, Libal NL, Casper A, Bodhankar S, Offner H, Alkayed NJ. Recombinant T cell receptor ligand treatment improves neurological outcome in the presence of tissue plasminogen activator in experimental ischemic stroke. Transl Stroke Res. 2014;5(5):612–7.PubMedCentralCrossRefPubMed Zhu W, Libal NL, Casper A, Bodhankar S, Offner H, Alkayed NJ. Recombinant T cell receptor ligand treatment improves neurological outcome in the presence of tissue plasminogen activator in experimental ischemic stroke. Transl Stroke Res. 2014;5(5):612–7.PubMedCentralCrossRefPubMed
36.
37.
go back to reference Zhou Y, Murugappan SK, Sharma VK. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl Stroke Res. 2014;5(5):627–34.CrossRefPubMed Zhou Y, Murugappan SK, Sharma VK. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl Stroke Res. 2014;5(5):627–34.CrossRefPubMed
38.
go back to reference Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711–6.PubMedCentralCrossRefPubMed Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711–6.PubMedCentralCrossRefPubMed
Metadata
Title
Translational Stroke Research on Blood-Brain Barrier Damage: Challenges, Perspectives, and Goals
Authors
Yejie Shi
Rehana K. Leak
Richard F. Keep
Jun Chen
Publication date
01-04-2016
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2016
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-016-0447-9

Other articles of this Issue 2/2016

Translational Stroke Research 2/2016 Go to the issue