Skip to main content
Top
Published in: Current Oncology Reports 3/2012

01-06-2012 | Genitourinary Cancers (E Jonasch, Section Editor)

Renal Cell Carcinoma Deep Sequencing: Recent Developments

Authors: Leslie J. Farber, Kyle Furge, Bin Tean Teh

Published in: Current Oncology Reports | Issue 3/2012

Login to get access

Abstract

Renal cell carcinoma (RCC) is the most common type of renal cancer in adults. RCC is notoriously resistant to current therapies suggesting the need to improve our knowledge and create more effective therapies. The molecular genetic defects that occur in RCC are extensive and complex ranging from single DNA changes, to large chromosomal defects, to signature disruptions in the transcription of hundreds of genes. These changes are often shared within each histological RCC subtype, illustrating their significance to the disease phenotype. This review presents an overview of the genetic abnormalities that occur within the most common subtypes of RCC. We discuss the recent molecular findings that have advanced our understanding of the somatic architecture of renal tumors and their impact on disease therapeutics.
Literature
1.
2.
go back to reference Maher ER, Kaelin Jr WG. von Hippel-Lindau disease. Med (Baltimore). 1997;76:381–91.CrossRef Maher ER, Kaelin Jr WG. von Hippel-Lindau disease. Med (Baltimore). 1997;76:381–91.CrossRef
3.
go back to reference Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.PubMedCrossRef Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.PubMedCrossRef
4.
go back to reference Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.PubMedCrossRef Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.PubMedCrossRef
5.
go back to reference Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69(11):4674–81.PubMedCrossRef Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69(11):4674–81.PubMedCrossRef
6.
go back to reference Young AP, Schlisio S, Minamishima YA, et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol. 2008;10:361–9.PubMedCrossRef Young AP, Schlisio S, Minamishima YA, et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol. 2008;10:361–9.PubMedCrossRef
7.
go back to reference Young AP, Kaelin Jr WG. Senescence triggered by the loss of the VHL tumor suppressor. Cell Cycle. 2008;7(12):1709–12.PubMedCrossRef Young AP, Kaelin Jr WG. Senescence triggered by the loss of the VHL tumor suppressor. Cell Cycle. 2008;7(12):1709–12.PubMedCrossRef
8.
go back to reference •• Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42. This study identified the most promising cancer gene associated with ccRCC since VHL as a prognostic and predictive marker.PubMedCrossRef •• Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42. This study identified the most promising cancer gene associated with ccRCC since VHL as a prognostic and predictive marker.PubMedCrossRef
9.
go back to reference van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3.PubMedCrossRef van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3.PubMedCrossRef
10.
go back to reference Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.PubMedCrossRef Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.PubMedCrossRef
11.
go back to reference Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.PubMedCrossRef Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.PubMedCrossRef
12.
go back to reference Jones S, Wang TL, Shih IeM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.PubMedCrossRef Jones S, Wang TL, Shih IeM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.PubMedCrossRef
13.
go back to reference Wang X, Nagl Jr NG, Flowers S, et al. Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer. 2004;112(4):636.PubMedCrossRef Wang X, Nagl Jr NG, Flowers S, et al. Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer. 2004;112(4):636.PubMedCrossRef
14.
go back to reference Orlovsky K, Kalinkovich A, Rozovskaia T, et al. Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci U S A. 2011;108(19):7956–61.PubMedCrossRef Orlovsky K, Kalinkovich A, Rozovskaia T, et al. Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci U S A. 2011;108(19):7956–61.PubMedCrossRef
15.
go back to reference Niu X, Zhang T, Liao L, et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. 2011 Jul 4 Niu X, Zhang T, Liao L, et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. 2011 Jul 4
16.
go back to reference Abidi FE, Holloway L, Moore CA, et al. Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J Med Genet. 2008;45(12):787–93.PubMedCrossRef Abidi FE, Holloway L, Moore CA, et al. Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J Med Genet. 2008;45(12):787–93.PubMedCrossRef
17.
go back to reference Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A. 2008;146A(4):505–11.PubMedCrossRef Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A. 2008;146A(4):505–11.PubMedCrossRef
18.
go back to reference Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, et al. A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci Lett. 2011;498(1):67–71.PubMedCrossRef Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, et al. A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci Lett. 2011;498(1):67–71.PubMedCrossRef
19.
go back to reference Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008;27(2):406–20.PubMedCrossRef Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008;27(2):406–20.PubMedCrossRef
20.
go back to reference Duns G, van den Berg E, van Duivenbode I, et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 2010;70(11):4287–91.PubMedCrossRef Duns G, van den Berg E, van Duivenbode I, et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 2010;70(11):4287–91.PubMedCrossRef
21.
go back to reference Guo G, Gui Y, Gao S, Tang A, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 2012;44(1):17–9.CrossRef Guo G, Gui Y, Gao S, Tang A, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 2012;44(1):17–9.CrossRef
22.
go back to reference Elfving P, Mandahl N, Lundgren R, et al. Prognostic implications of cytogenetic findings in kidney cancer. Br J Urol. 1997;80(5):698–706.PubMedCrossRef Elfving P, Mandahl N, Lundgren R, et al. Prognostic implications of cytogenetic findings in kidney cancer. Br J Urol. 1997;80(5):698–706.PubMedCrossRef
23.
go back to reference Schullerus D, Herbers J, Chudek J, Kanamaru H, Kovacs G. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol. 1997;183(2):151–5.PubMedCrossRef Schullerus D, Herbers J, Chudek J, Kanamaru H, Kovacs G. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol. 1997;183(2):151–5.PubMedCrossRef
24.
go back to reference Herbers J, Schullerus D, Müller H, et al. Significance of chromosome arm 14q loss in nonpapillary renal cell carcinomas. Gene Chromosome Canc. 1997;19(1):29–35.CrossRef Herbers J, Schullerus D, Müller H, et al. Significance of chromosome arm 14q loss in nonpapillary renal cell carcinomas. Gene Chromosome Canc. 1997;19(1):29–35.CrossRef
25.
go back to reference Alimov A, Sundelin B, Wang N, Larsson C, Bergerheim U. Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int J Oncol. 2004;25(1):179–85.PubMed Alimov A, Sundelin B, Wang N, Larsson C, Bergerheim U. Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int J Oncol. 2004;25(1):179–85.PubMed
26.
go back to reference Shen C, Beroukhim R, Schumacher SE, et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Canc Discov. 2011;1:222–35.CrossRef Shen C, Beroukhim R, Schumacher SE, et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Canc Discov. 2011;1:222–35.CrossRef
27.
go back to reference • Dondeti VR, Wubbenhorst B, Lal P, et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 2012;72(1):112–21. This study advances our understanding ccRCCs by identifying two potential chromosome 5q oncogenes.PubMedCrossRef • Dondeti VR, Wubbenhorst B, Lal P, et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 2012;72(1):112–21. This study advances our understanding ccRCCs by identifying two potential chromosome 5q oncogenes.PubMedCrossRef
28.
go back to reference • Purdue MP, Johansson M, Zelenika D, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43(1):60–5. This study directly implicates mutations in the HIF to RCC tumorigenesis. PubMedCrossRef • Purdue MP, Johansson M, Zelenika D, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43(1):60–5. This study directly implicates mutations in the HIF to RCC tumorigenesis. PubMedCrossRef
29.
go back to reference Han SS, Yeager M, Moore LE, et al. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet. 2011, Dec 20 Han SS, Yeager M, Moore LE, et al. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet. 2011, Dec 20
30.
go back to reference Duesberg P, Stindl R, Li R, et al. Aneuploidy verses gene mutations as cause of cancer. Curr Sci. 2001;81:490–500. Duesberg P, Stindl R, Li R, et al. Aneuploidy verses gene mutations as cause of cancer. Curr Sci. 2001;81:490–500.
31.
go back to reference Kovacs G, Akhtar M, Beckwith BJ, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183(2):131–3.PubMedCrossRef Kovacs G, Akhtar M, Beckwith BJ, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183(2):131–3.PubMedCrossRef
32.
go back to reference Klatte T, Pantuck AJ, Said JW, et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res. 2009;15(4):1162–9.PubMedCrossRef Klatte T, Pantuck AJ, Said JW, et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res. 2009;15(4):1162–9.PubMedCrossRef
33.
go back to reference Toma MI, Grosser M, Herr A, et al. Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10 K single nucleotide polymorphism mapping array. Neoplasia. 2008;10(7):634–42.PubMed Toma MI, Grosser M, Herr A, et al. Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10 K single nucleotide polymorphism mapping array. Neoplasia. 2008;10(7):634–42.PubMed
34.
go back to reference Brunelli M, Eccher A, Gobbo S, et al. Loss of chromosome 9p is an independent prognostic factor in patients with clear cell renal cell carcinoma. Mod Pathol. 2008;21(1):1–6.PubMedCrossRef Brunelli M, Eccher A, Gobbo S, et al. Loss of chromosome 9p is an independent prognostic factor in patients with clear cell renal cell carcinoma. Mod Pathol. 2008;21(1):1–6.PubMedCrossRef
35.
go back to reference Hagenkord JM, Parwani AV, Lyons-Weiler MA, et al. Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors. Diagn Pathol. 2008;3:44.PubMedCrossRef Hagenkord JM, Parwani AV, Lyons-Weiler MA, et al. Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors. Diagn Pathol. 2008;3:44.PubMedCrossRef
36.
go back to reference Cohen AJ, Li FP, Berg S, et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301(11):592–5.PubMedCrossRef Cohen AJ, Li FP, Berg S, et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301(11):592–5.PubMedCrossRef
37.
go back to reference Zbar B, Brauch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature. 1987;327(6124):721–4.PubMedCrossRef Zbar B, Brauch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature. 1987;327(6124):721–4.PubMedCrossRef
38.
go back to reference Kovacs G, Brusa P. Recurrent genomic rearrangements are not at the fragile sites on chromosomes 3 and 5 in human renal cell carcinomas. Hum Genet. 1988;80:99–101.PubMedCrossRef Kovacs G, Brusa P. Recurrent genomic rearrangements are not at the fragile sites on chromosomes 3 and 5 in human renal cell carcinomas. Hum Genet. 1988;80:99–101.PubMedCrossRef
39.
go back to reference Glover TW, Coyle-Morris JF, Li FP, et al. Translocation t(3;8)(p14.2;q24.1) in renal cell carcinoma affects expression of the common fragile site at 3p14(FRA3B) in lymphocytes. Canc Genet Cytogenet. 1988;31(1):69–73.CrossRef Glover TW, Coyle-Morris JF, Li FP, et al. Translocation t(3;8)(p14.2;q24.1) in renal cell carcinoma affects expression of the common fragile site at 3p14(FRA3B) in lymphocytes. Canc Genet Cytogenet. 1988;31(1):69–73.CrossRef
40.
go back to reference Tajara EH, Berger CS, Hecht BK, et al. Loss of common 3p14 fragile site expression in renal cell carcinoma with deletion breakpoint at 3p14. Canc Genet Cytogenet. 1988;31(1):75–82.CrossRef Tajara EH, Berger CS, Hecht BK, et al. Loss of common 3p14 fragile site expression in renal cell carcinoma with deletion breakpoint at 3p14. Canc Genet Cytogenet. 1988;31(1):75–82.CrossRef
41.
go back to reference Shridhar V, Rivard S, Shridhar R, et al. A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas. Oncogene. 1996;12(9):1931–9.PubMed Shridhar V, Rivard S, Shridhar R, et al. A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas. Oncogene. 1996;12(9):1931–9.PubMed
42.
go back to reference Gunawan B, Huber W, Holtrup M, et al. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res. 2001;61:7731–8.PubMed Gunawan B, Huber W, Holtrup M, et al. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res. 2001;61:7731–8.PubMed
43.
go back to reference Monzon FA, Alvarez K, Peterson L, et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011;24:1470–9.PubMedCrossRef Monzon FA, Alvarez K, Peterson L, et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011;24:1470–9.PubMedCrossRef
44.
go back to reference Moch H, Presti Jr JC, Sauter G, et al. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res. 1996;56(1):27–30.PubMed Moch H, Presti Jr JC, Sauter G, et al. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res. 1996;56(1):27–30.PubMed
45.
go back to reference Nagao K, Yamaguchi S, Matsuyama H, et al. Allelic loss of 3p25 associated with alterations of 5q22.3 approximately q23.2 may affect the prognosis of conventional renal cell carcinoma. Canc Genet Cytogenet. 2005;160(1):43–8.CrossRef Nagao K, Yamaguchi S, Matsuyama H, et al. Allelic loss of 3p25 associated with alterations of 5q22.3 approximately q23.2 may affect the prognosis of conventional renal cell carcinoma. Canc Genet Cytogenet. 2005;160(1):43–8.CrossRef
46.
go back to reference Junker K, Moravek P, Podhola M, et al. Genetic alterations in metastatic renal cell carcinoma detected by comparative genomic hybridization: correlation with clinical and histological data. Int J Oncol. 2000;17(5):903–8.PubMed Junker K, Moravek P, Podhola M, et al. Genetic alterations in metastatic renal cell carcinoma detected by comparative genomic hybridization: correlation with clinical and histological data. Int J Oncol. 2000;17(5):903–8.PubMed
47.
go back to reference Amin MB, Corless CL, Renshaw AA, Tickoo SK, Kubus J, Schultz DS. Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol. 1997;21(6):621–35.PubMedCrossRef Amin MB, Corless CL, Renshaw AA, Tickoo SK, Kubus J, Schultz DS. Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol. 1997;21(6):621–35.PubMedCrossRef
48.
go back to reference Jiang F, Richter J, Schraml P, et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol. 1998;153(5):1467–73.PubMedCrossRef Jiang F, Richter J, Schraml P, et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol. 1998;153(5):1467–73.PubMedCrossRef
49.
go back to reference Delahunt B, Furge K, Greenman C, et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol. 2001;32(6):590–5.PubMedCrossRef Delahunt B, Furge K, Greenman C, et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol. 2001;32(6):590–5.PubMedCrossRef
50.
go back to reference Pignot G, Elie C, Conquy S, et al. Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology. 2007;69(2):230–5.PubMedCrossRef Pignot G, Elie C, Conquy S, et al. Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology. 2007;69(2):230–5.PubMedCrossRef
51.
go back to reference Gunawan B, von Heydebreck A, Fritsch T, et al. Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors. Cancer Res. 2003;63(19):6200–5.PubMed Gunawan B, von Heydebreck A, Fritsch T, et al. Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors. Cancer Res. 2003;63(19):6200–5.PubMed
52.
go back to reference Waldert M, Haitel A, Marberger M, et al. Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC. BJU Int. 2008;102(10):1381–4.PubMed Waldert M, Haitel A, Marberger M, et al. Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC. BJU Int. 2008;102(10):1381–4.PubMed
53.
go back to reference Yang XJ, Tan MH, Kim HL, et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 2005;65(13):5628–37.PubMedCrossRef Yang XJ, Tan MH, Kim HL, et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 2005;65(13):5628–37.PubMedCrossRef
54.
go back to reference Furge KA, Tan MH, Dykema K, et al. Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene. 2007;26(9):1346–50.PubMedCrossRef Furge KA, Tan MH, Dykema K, et al. Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene. 2007;26(9):1346–50.PubMedCrossRef
55.
go back to reference Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.PubMedCrossRef Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.PubMedCrossRef
56.
go back to reference Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.PubMedCrossRef Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.PubMedCrossRef
57.
go back to reference Lubensky IA, Schmidt L, Zhuang Z, et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999;155(2):517–26.PubMedCrossRef Lubensky IA, Schmidt L, Zhuang Z, et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999;155(2):517–26.PubMedCrossRef
58.
go back to reference Bellon SF, Kaplan-Lefko P, Yang Y, et al. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem. 2008;283(5):2675–83.PubMedCrossRef Bellon SF, Kaplan-Lefko P, Yang Y, et al. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem. 2008;283(5):2675–83.PubMedCrossRef
59.
go back to reference Koski TA, Lehtonen HJ, Jee KJ, et al. Array comparative genomic hybridization identifies a distinct DNA copy number profile in renal cell cancer associated with hereditary leiomyomatosis and renal cell cancer. Gene Chromosome Canc. 2009;48(7):544–51.CrossRef Koski TA, Lehtonen HJ, Jee KJ, et al. Array comparative genomic hybridization identifies a distinct DNA copy number profile in renal cell cancer associated with hereditary leiomyomatosis and renal cell cancer. Gene Chromosome Canc. 2009;48(7):544–51.CrossRef
60.
go back to reference Looyenga BD, Furge KA, Dykema KJ, et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A. 2011;108(4):1439–44.PubMedCrossRef Looyenga BD, Furge KA, Dykema KJ, et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A. 2011;108(4):1439–44.PubMedCrossRef
61.
go back to reference Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.PubMedCrossRef Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.PubMedCrossRef
62.
go back to reference Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106.PubMedCrossRef Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106.PubMedCrossRef
63.
go back to reference Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK, et al. Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet. 2006;43(6):523–6.PubMedCrossRef Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK, et al. Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet. 2006;43(6):523–6.PubMedCrossRef
64.
go back to reference Refae MA, Wong N, Patenaude F, et al. Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol. 2007;4(4):256–61.PubMedCrossRef Refae MA, Wong N, Patenaude F, et al. Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol. 2007;4(4):256–61.PubMedCrossRef
65.
go back to reference Toro JR, Wei MH, Glenn GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.PubMedCrossRef Toro JR, Wei MH, Glenn GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.PubMedCrossRef
66.
go back to reference Wei MH, Toure O, Glenn GM, et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet. 2006;43(1):18–27.PubMedCrossRef Wei MH, Toure O, Glenn GM, et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet. 2006;43(1):18–27.PubMedCrossRef
67.
go back to reference Lehtonen HJ, Blanco I, Piulats JM, et al. Conventional renal cancer in a patient with fumarate hydratase mutation. Hum Pathol. 2007;38(5):793–6.PubMedCrossRef Lehtonen HJ, Blanco I, Piulats JM, et al. Conventional renal cancer in a patient with fumarate hydratase mutation. Hum Pathol. 2007;38(5):793–6.PubMedCrossRef
68.
go back to reference Adam J, Hatipoglu E, O’Flaherty L, et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathways: roles for fumarate in KEAP1 succination and Nrf2 signaling. Canc Cell. 2011;20:524–37.CrossRef Adam J, Hatipoglu E, O’Flaherty L, et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathways: roles for fumarate in KEAP1 succination and Nrf2 signaling. Canc Cell. 2011;20:524–37.CrossRef
69.
go back to reference Ooi A, Wong JC, Petillo D, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Canc Cell. 2011;20:511–23.CrossRef Ooi A, Wong JC, Petillo D, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Canc Cell. 2011;20:511–23.CrossRef
70.
go back to reference Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol. 1997;10(6):537–44.PubMed Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol. 1997;10(6):537–44.PubMed
71.
go back to reference Schuetz AN, Yin-Goen Q, Amin MB, et al. Molecular classification of renal tumors by gene expression profiling. J Mol Diagn. 2005;7(2):206–18.PubMedCrossRef Schuetz AN, Yin-Goen Q, Amin MB, et al. Molecular classification of renal tumors by gene expression profiling. J Mol Diagn. 2005;7(2):206–18.PubMedCrossRef
72.
go back to reference Mayr JA, Meierhofer D, Zimmermann F, et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res. 2008;14(8):2270–5.PubMedCrossRef Mayr JA, Meierhofer D, Zimmermann F, et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res. 2008;14(8):2270–5.PubMedCrossRef
73.
go back to reference Gasparre G, Hervouet E, de Laplanche E, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet. 2008;17(7):986–95.PubMedCrossRef Gasparre G, Hervouet E, de Laplanche E, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet. 2008;17(7):986–95.PubMedCrossRef
74.
go back to reference Kovacs A, Storkel S, Thoenes W, Kovacs G. Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol. 1992;167(3):273–7.PubMedCrossRef Kovacs A, Storkel S, Thoenes W, Kovacs G. Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol. 1992;167(3):273–7.PubMedCrossRef
75.
go back to reference Welter C, Kovacs G, Seitz G, Blin N. Alteration of mitochondrial DNA in human oncocytomas. Gene Chromosome Canc. 1989;1(1):79–82.CrossRef Welter C, Kovacs G, Seitz G, Blin N. Alteration of mitochondrial DNA in human oncocytomas. Gene Chromosome Canc. 1989;1(1):79–82.CrossRef
76.
go back to reference Brunelli M, Eble JN, Zhang S, et al. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol. 2005;18(2):161–9.PubMedCrossRef Brunelli M, Eble JN, Zhang S, et al. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol. 2005;18(2):161–9.PubMedCrossRef
77.
go back to reference Takahashi M, Yang XJ, Sugimura J, et al. Molecular sub-classification of kidney cancer and the discovery of new diagnostic markers. Oncogene. 2003;22:6810–8.PubMedCrossRef Takahashi M, Yang XJ, Sugimura J, et al. Molecular sub-classification of kidney cancer and the discovery of new diagnostic markers. Oncogene. 2003;22:6810–8.PubMedCrossRef
78.
go back to reference Higgins JP, Shinghal R, Gill H, et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162(3):925–32.PubMedCrossRef Higgins JP, Shinghal R, Gill H, et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162(3):925–32.PubMedCrossRef
79.
go back to reference Brown JA, Takahashi S, Alcaraz A, et al. Fluorescence in situ hybriziation analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1. J Urol. 1996;156:31–5.PubMedCrossRef Brown JA, Takahashi S, Alcaraz A, et al. Fluorescence in situ hybriziation analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1. J Urol. 1996;156:31–5.PubMedCrossRef
80.
go back to reference Paner GP, Lindgren V, Jacobson K, et al. High incidence of chromosome 1 abnormalities in a series of 27 renal oncocytomas: cytogenetic and fluorescence in situ hybridzation studies. Arch Pathol Lab Med. 2006;131:81–5. Paner GP, Lindgren V, Jacobson K, et al. High incidence of chromosome 1 abnormalities in a series of 27 renal oncocytomas: cytogenetic and fluorescence in situ hybridzation studies. Arch Pathol Lab Med. 2006;131:81–5.
81.
go back to reference Fuzesi L, Gunawan B, Braun S, et al. Cytogenetic analysis of 11 renal oncocytomas: further evidence of structural rearrangments of 11q13 as a characteristics of chromosomal anomaly. Canc Genet Cytogenet. 1999;107:1–6.CrossRef Fuzesi L, Gunawan B, Braun S, et al. Cytogenetic analysis of 11 renal oncocytomas: further evidence of structural rearrangments of 11q13 as a characteristics of chromosomal anomaly. Canc Genet Cytogenet. 1999;107:1–6.CrossRef
82.
go back to reference Takahashi M, Rhodes DR, Furge KA, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A. 2001;98(17):9754–9.PubMedCrossRef Takahashi M, Rhodes DR, Furge KA, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A. 2001;98(17):9754–9.PubMedCrossRef
83.
go back to reference Gieseg MA, Cody T, Man MZ, et al. Expression profiling of human renal carcinomas with functional taxonomic analysis. BMC Bioinforma. 2002;3:26.CrossRef Gieseg MA, Cody T, Man MZ, et al. Expression profiling of human renal carcinomas with functional taxonomic analysis. BMC Bioinforma. 2002;3:26.CrossRef
84.
go back to reference Boer JM, Huber WK, Sültmann H, et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 2001;11(11):1861–70.PubMed Boer JM, Huber WK, Sültmann H, et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 2001;11(11):1861–70.PubMed
85.
go back to reference Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11(16):5730–9.PubMedCrossRef Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11(16):5730–9.PubMedCrossRef
86.
go back to reference Liou LS, Shi T, Duan ZH, et al. Microarray gene expression profiling and analysis in renal cell carcinoma. BMC Urol. 2004;4:9.PubMedCrossRef Liou LS, Shi T, Duan ZH, et al. Microarray gene expression profiling and analysis in renal cell carcinoma. BMC Urol. 2004;4:9.PubMedCrossRef
87.
go back to reference Yamazaki K, Sakamoto M, Ohta T, et al. Overexpression of KIT in chromophobe renal cell carcinoma. Oncogene. 2003;22(6):847–52.PubMedCrossRef Yamazaki K, Sakamoto M, Ohta T, et al. Overexpression of KIT in chromophobe renal cell carcinoma. Oncogene. 2003;22(6):847–52.PubMedCrossRef
88.
go back to reference Skubitz KM, Skubitz AP. Differential gene expression in renal-cell cancer. J Lab Clin Med. 2002;140(1):52–64.PubMedCrossRef Skubitz KM, Skubitz AP. Differential gene expression in renal-cell cancer. J Lab Clin Med. 2002;140(1):52–64.PubMedCrossRef
89.
go back to reference Skubitz KM, Zimmermann W, Kammerer R, et al. Differential gene expression identifies subgroups of renal cell carcinoma. J Lab Clin Med. 2006;147(5):250–67.PubMedCrossRef Skubitz KM, Zimmermann W, Kammerer R, et al. Differential gene expression identifies subgroups of renal cell carcinoma. J Lab Clin Med. 2006;147(5):250–67.PubMedCrossRef
90.
go back to reference Furge KA, Dykema K, Petillo D, et al. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma. Can Urol Assoc J. 2007;1(2 Suppl):S21–7.PubMed Furge KA, Dykema K, Petillo D, et al. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma. Can Urol Assoc J. 2007;1(2 Suppl):S21–7.PubMed
91.
go back to reference Zhou M, Kort E, Hoekstra P, et al. Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney are the same disease entity: molecular and histologic evidence. Am J Surg Pathol. 2009;33(1):72–80.PubMedCrossRef Zhou M, Kort E, Hoekstra P, et al. Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney are the same disease entity: molecular and histologic evidence. Am J Surg Pathol. 2009;33(1):72–80.PubMedCrossRef
92.
go back to reference Moch H, Schraml P, Bubendorf L, et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol. 1999;154(4):981–6.PubMedCrossRef Moch H, Schraml P, Bubendorf L, et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol. 1999;154(4):981–6.PubMedCrossRef
93.
go back to reference Li G, Barthelemy A, Feng G, et al. S100A1: a powerful marker to differentiate chromophobe renal cell carcinoma from renal oncocytoma. Histopathology. 2007;50(5):642–7.PubMedCrossRef Li G, Barthelemy A, Feng G, et al. S100A1: a powerful marker to differentiate chromophobe renal cell carcinoma from renal oncocytoma. Histopathology. 2007;50(5):642–7.PubMedCrossRef
94.
go back to reference Lin F, Yang W, Betten M, et al. Expression of S-100 protein in renal cell neoplasms. Hum Pathol. 2006;37(4):462–70.PubMedCrossRef Lin F, Yang W, Betten M, et al. Expression of S-100 protein in renal cell neoplasms. Hum Pathol. 2006;37(4):462–70.PubMedCrossRef
95.
go back to reference Rocca PC, Brunelli M, Gobbo S, et al. Diagnostic utility of S100A1 expression in renal cell neoplasms: an immunohistochemical and quantitative RT-PCR study. Mod Pathol. 2007;20(7):722–8.PubMedCrossRef Rocca PC, Brunelli M, Gobbo S, et al. Diagnostic utility of S100A1 expression in renal cell neoplasms: an immunohistochemical and quantitative RT-PCR study. Mod Pathol. 2007;20(7):722–8.PubMedCrossRef
96.
go back to reference Yao M, Huang Y, Shioi K, et al. Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res. 2007;13(1):152–60.PubMedCrossRef Yao M, Huang Y, Shioi K, et al. Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res. 2007;13(1):152–60.PubMedCrossRef
97.
go back to reference Kosari F, Parker AS, Kube DM, et al. Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res. 2005;11(14):5128–39.PubMedCrossRef Kosari F, Parker AS, Kube DM, et al. Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res. 2005;11(14):5128–39.PubMedCrossRef
98.
go back to reference Zhao H, Ljungberg B, Grankvist K, et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3(1):e13.PubMedCrossRef Zhao H, Ljungberg B, Grankvist K, et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3(1):e13.PubMedCrossRef
99.
go back to reference Tsui KH, Shvarts O, Smith RB, et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol. 2000;163(4):1090–5. quiz 1295.PubMedCrossRef Tsui KH, Shvarts O, Smith RB, et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol. 2000;163(4):1090–5. quiz 1295.PubMedCrossRef
100.
go back to reference Gettman MT, Blute ML, Spotts B, et al. Pathologic staging of renal cell carcinoma: significance of tumor classification with the 1997 TNM staging system. Cancer. 2001;91(2):354–61.PubMedCrossRef Gettman MT, Blute ML, Spotts B, et al. Pathologic staging of renal cell carcinoma: significance of tumor classification with the 1997 TNM staging system. Cancer. 2001;91(2):354–61.PubMedCrossRef
101.
go back to reference Han KR, Bleumer I, Pantuck AJ, et al. Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population. J Urol. 2003;170(6 Pt 1):2221–4.PubMedCrossRef Han KR, Bleumer I, Pantuck AJ, et al. Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population. J Urol. 2003;170(6 Pt 1):2221–4.PubMedCrossRef
102.
go back to reference Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. 2001;19(6):1649–57.PubMed Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. 2001;19(6):1649–57.PubMed
103.
go back to reference Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–11.PubMedCrossRef Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–11.PubMedCrossRef
104.
go back to reference Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol. 2005;205(3):377–87.PubMedCrossRef Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol. 2005;205(3):377–87.PubMedCrossRef
105.
go back to reference Desai KV, Xiao N, Wang W, et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci U S A. 2002;99(10):6967–72.PubMedCrossRef Desai KV, Xiao N, Wang W, et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci U S A. 2002;99(10):6967–72.PubMedCrossRef
106.
go back to reference Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Canc Cell. 2002;1(1):75–87.CrossRef Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Canc Cell. 2002;1(1):75–87.CrossRef
107.
go back to reference Huang E, Ishida S, Pittman J, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34:226–30.PubMedCrossRef Huang E, Ishida S, Pittman J, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003;34:226–30.PubMedCrossRef
108.
go back to reference Sweet-Cordero A, Mukherjee S, Subramanian A, et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 2005;37(1):48–55.PubMed Sweet-Cordero A, Mukherjee S, Subramanian A, et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 2005;37(1):48–55.PubMed
109.
go back to reference Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.PubMedCrossRef Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.PubMedCrossRef
110.
go back to reference Chi JT, Wang Z, Nuyten DS, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006;3(3):e47.PubMedCrossRef Chi JT, Wang Z, Nuyten DS, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006;3(3):e47.PubMedCrossRef
111.
go back to reference Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedCrossRef Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedCrossRef
112.
go back to reference Kim S, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinforma. 2005;6:144.CrossRef Kim S, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinforma. 2005;6:144.CrossRef
113.
go back to reference Riss J, Khanna C, Koo S, et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 2006;66(14):7216–24.PubMedCrossRef Riss J, Khanna C, Koo S, et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res. 2006;66(14):7216–24.PubMedCrossRef
114.
go back to reference Copland JA, Luxon BA, Ajani L, et al. Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene. 2003;22(39):8053–62.PubMedCrossRef Copland JA, Luxon BA, Ajani L, et al. Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene. 2003;22(39):8053–62.PubMedCrossRef
115.
go back to reference Furge KA, Chen J, Koeman J, et al. Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 2007;67(7):3171–6.PubMedCrossRef Furge KA, Chen J, Koeman J, et al. Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 2007;67(7):3171–6.PubMedCrossRef
Metadata
Title
Renal Cell Carcinoma Deep Sequencing: Recent Developments
Authors
Leslie J. Farber
Kyle Furge
Bin Tean Teh
Publication date
01-06-2012
Publisher
Current Science Inc.
Published in
Current Oncology Reports / Issue 3/2012
Print ISSN: 1523-3790
Electronic ISSN: 1534-6269
DOI
https://doi.org/10.1007/s11912-012-0230-3

Other articles of this Issue 3/2012

Current Oncology Reports 3/2012 Go to the issue

Gastrointestinal Cancers (L Saltz, Section Editor)

Management of Hepatocellular Carcinoma: Beyond Sorafenib

Gastrointestinal Cancers (L Saltz, Section Editor)

Toward the Non-surgical Management of Locally Advanced Rectal Cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine