Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

Remote ischemic preconditioning to reduce contrast-induced acute kidney injury in chronic kidney disease: a randomized controlled trial

Authors: Ali Ghaemian, Jamshid Yazdani, Soheil Azizi, Ali A. Farsavian, Maryam Nabati, Alireza Malekrah, Mozhdeh Dabirian, Fatemeh Espahbodi, Bahareh Mirjani, Hossein Mohsenipouya, Javad Heshmatian

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

The impact of contrast-induced acute kidney injury (CI-AKI) on patients with chronic renal disease is well-known. Remote ischemic preconditioning (RIPC) is a non-invasive method that can reduce the risk of CI-AKI, but studies on RIPC have had different results. The aim of the present study was to assess the potential impact of RIPC on CI-AKI.

Methods

In a randomized, double blinded, controlled trial, 132 patients with chronic renal dysfunction (glomerular filtration rate < 60 mL/min/m2) who underwent coronary angiography or angioplasty received adequate hydration. RIPC was performed in 66 patients by applying an upper arm blood pressure cuff. The cuff was inflated four times for 5 min to 50 mmHg above the systolic blood pressure, followed by deflation for 5 min. In the control group, the blood pressure cuff was inflated only to 10 mmHg below the patient’s diastolic blood pressure. The primary endpoint was an increase in serum cystatin C ≥ 10% from baseline to 48–72 h after exposure to the contrast.

Results

The primary endpoint was achieved in 48 (36.4%) patients (24 in each group). RIPC did not show any significant effect on the occurrence of the primary endpoint (P = 1). In addition, when the results were analyzed based on the Mehran risk score for subgroups of patients, RIPC did not reduce the occurrence of the primary endpoint (P = 0.97).

Conclusions

In patients at moderate-to-high risk of developing CI-AKI when an adequate hydration protocol is performed, RIPC does not have an additive effect to prevent the occurrence of CI-AKI.

Trial registration

The clinical trial was registered on (Identification number IRCT201605022293​5N2, on December 19, 2016 as a retrospective IRCT).
Literature
1.
go back to reference Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.CrossRef Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.CrossRef
2.
go back to reference Best PJM, Lennon R, Ting HH, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2002;39(7):1113–9.CrossRef Best PJM, Lennon R, Ting HH, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2002;39(7):1113–9.CrossRef
4.
go back to reference van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin M-F, Bertolotto M, et al. Post-contrast acute kidney injury – part 1: definition, clinical features, incidence, role of contrast medium and risk factors. Eur Radiol. 2018;28(7):2845–55.CrossRef van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin M-F, Bertolotto M, et al. Post-contrast acute kidney injury – part 1: definition, clinical features, incidence, role of contrast medium and risk factors. Eur Radiol. 2018;28(7):2845–55.CrossRef
5.
go back to reference Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.CrossRef Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.CrossRef
6.
go back to reference Sjostrom P, Tidman M, Jones I. The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol. 2004;62(3):241–2.CrossRef Sjostrom P, Tidman M, Jones I. The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol. 2004;62(3):241–2.CrossRef
7.
go back to reference Briguori C, Visconti G, Rivera NV, et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121(19):2117–22.CrossRef Briguori C, Visconti G, Rivera NV, et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121(19):2117–22.CrossRef
8.
go back to reference Cheung MM, Kharbanda RK, Konstantinov IE, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277–82.CrossRef Cheung MM, Kharbanda RK, Konstantinov IE, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277–82.CrossRef
9.
go back to reference Hausenloy DJ, Mwamure PK, Venugopal V, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–9.CrossRef Hausenloy DJ, Mwamure PK, Venugopal V, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–9.CrossRef
10.
go back to reference Igarashi G, Iino K, Watanabe H, Ito H. Remote ischemic pre-conditioning alleviates contrastinduced acute kidney injury in patients with moderate chronic kidney disease. Circ J. 2013;77(12):3037–44.CrossRef Igarashi G, Iino K, Watanabe H, Ito H. Remote ischemic pre-conditioning alleviates contrastinduced acute kidney injury in patients with moderate chronic kidney disease. Circ J. 2013;77(12):3037–44.CrossRef
11.
go back to reference Menting TP, Sterenborg TB, de Waal Y, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: a randomized controlled trial. Eur J Vasc Endovasc Surg. 2015;50(4):527–32.CrossRef Menting TP, Sterenborg TB, de Waal Y, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: a randomized controlled trial. Eur J Vasc Endovasc Surg. 2015;50(4):527–32.CrossRef
12.
go back to reference Er F, Nia AM, Dopp H, et al. Ischemic preconditioning for prevention of contrast-medium-induced nephropathy: randomized pilot RenPro-trial (renal protection trial). Circulation. 2012;126(3):296–303.CrossRef Er F, Nia AM, Dopp H, et al. Ischemic preconditioning for prevention of contrast-medium-induced nephropathy: randomized pilot RenPro-trial (renal protection trial). Circulation. 2012;126(3):296–303.CrossRef
13.
go back to reference Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Radiology ESoU, Vienna. 2012. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Radiology ESoU, Vienna. 2012.
14.
go back to reference Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.CrossRef Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.CrossRef
15.
go back to reference Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6):649–52.CrossRef Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6):649–52.CrossRef
16.
go back to reference Mehran R, Aymong ED, Nikolsky E. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMed Mehran R, Aymong ED, Nikolsky E. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMed
17.
go back to reference Tsai TT, Patel UD, Chang TI, et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath PCI registry. J Am Heart Assoc. 2014;3(6):e001380.CrossRef Tsai TT, Patel UD, Chang TI, et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath PCI registry. J Am Heart Assoc. 2014;3(6):e001380.CrossRef
18.
go back to reference Hatano M. Clinical study of tubular creatinine secretion in renal dysfunction. Nihon Jinzo Gakkai Shi. 1991;33(11):1097–104.PubMed Hatano M. Clinical study of tubular creatinine secretion in renal dysfunction. Nihon Jinzo Gakkai Shi. 1991;33(11):1097–104.PubMed
19.
go back to reference Sudarsky D, Nikolsky E. Contrast-induced nephropathy in interventional cardiology. Int J Nephrol Renov Dis. 2011;4:85–99. Sudarsky D, Nikolsky E. Contrast-induced nephropathy in interventional cardiology. Int J Nephrol Renov Dis. 2011;4:85–99.
20.
go back to reference Newman DJ, Thakkar H, Edwards RG, et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47(1):312–8.CrossRef Newman DJ, Thakkar H, Edwards RG, et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47(1):312–8.CrossRef
21.
go back to reference Kyhse-Andersen J, Schmidt C, Nordin G, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem. 1994;40(10):1921–6.PubMed Kyhse-Andersen J, Schmidt C, Nordin G, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem. 1994;40(10):1921–6.PubMed
22.
go back to reference Rickli H, Benou K, Ammann P, et al. Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol. 2004;61(2):98–102.CrossRef Rickli H, Benou K, Ammann P, et al. Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol. 2004;61(2):98–102.CrossRef
23.
go back to reference Maioli M, Toso A, Leoncini M, et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52(8):599–604.CrossRef Maioli M, Toso A, Leoncini M, et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52(8):599–604.CrossRef
24.
go back to reference McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008;51(15):1419–28.CrossRef McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008;51(15):1419–28.CrossRef
25.
go back to reference Mitchell AM, Jones AE, Tumlin JA, Kline JA. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5(1):4–9.CrossRef Mitchell AM, Jones AE, Tumlin JA, Kline JA. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5(1):4–9.CrossRef
26.
go back to reference Kim SM, Cha RH, Lee JP, et al. Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report. Am J Kidney Dis. 2010;55(6):1018–25.CrossRef Kim SM, Cha RH, Lee JP, et al. Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report. Am J Kidney Dis. 2010;55(6):1018–25.CrossRef
Metadata
Title
Remote ischemic preconditioning to reduce contrast-induced acute kidney injury in chronic kidney disease: a randomized controlled trial
Authors
Ali Ghaemian
Jamshid Yazdani
Soheil Azizi
Ali A. Farsavian
Maryam Nabati
Alireza Malekrah
Mozhdeh Dabirian
Fatemeh Espahbodi
Bahareh Mirjani
Hossein Mohsenipouya
Javad Heshmatian
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1169-x

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.