Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2015

Open Access 01-12-2015 | Research

Reliability, repeatability, and reproducibility of pulmonary transit time assessment by contrast enhanced echocardiography

Authors: Ingeborg H. F. Herold, Salvatore Saporito, R. Arthur Bouwman, Patrick Houthuizen, Hans C. van Assen, Massimo Mischi, Hendrikus H. M. Korsten

Published in: Cardiovascular Ultrasound | Issue 1/2015

Login to get access

Abstract

Background

The aim of this study is to investigate the inter and intra-rater reliability, repeatability, and reproducibility of pulmonary transit time (PTT) measurement in patients using contrast enhanced ultrasound (CEUS), as an indirect measure of preload and left ventricular function.

Methods

Mean transit times (MTT) were measured by drawing a region of interest (ROI) in right and left cardiac ventricle in the CEUS loops. Acoustic intensity dilution curves were obtained from the ROIs. MTTs were calculated by applying model-based fitting on the dilution curves. PTT was calculated as the difference of the MTTs. Eight raters with different levels of experience measured the PTT (time moment 1) and repeated the measurement within a week (time moment 2). Reliability and agreement were assessed using intra-class correlations (ICC) and Bland-Altman analysis. Repeatability was tested by estimating the variance of means (ANOVA) of three injections in each patient at different doses. Reproducibility was tested by the ICC of the two time moments.

Results

Fifteen patients with heart failure were included. The mean PTT was 11.8 ± 3.1 s at time moment 1 and 11.7 ± 2.9 s at time moment 2. The inter-rater reliability for PTT was excellent (ICC = 0.94). The intra-rater reliability per rater was between 0.81–0.99. Bland-Altman analysis revealed a bias of 0.10 s within the rater groups. Reproducibility for PTT showed an ICC = 0.94 between the two time moments. ANOVA showed no significant difference between the means of the three different doses F = 0.048 (P = 0.95). The mean and standard deviation for PTT estimates at three different doses was 11.6 ± 3.3 s.

Conclusions

PTT estimation using CEUS shows a high inter- and intra-rater reliability, repeatability at three different doses, and reproducibility by ROI drawing. This makes the minimally invasive PTT measurement using contrast echocardiography ready for clinical evaluation in patients with heart failure and for preload estimation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Herold IH, Russo G, Mischi M, Houthuizen P, Saidov T, van Het Veer M, et al. Volume quantification by contrast-enhanced ultrasound: an in-vitro comparison with true volumes and thermodilution. Cardiovasc Ultrasound. 2013;11:36.PubMedPubMedCentralCrossRef Herold IH, Russo G, Mischi M, Houthuizen P, Saidov T, van Het Veer M, et al. Volume quantification by contrast-enhanced ultrasound: an in-vitro comparison with true volumes and thermodilution. Cardiovasc Ultrasound. 2013;11:36.PubMedPubMedCentralCrossRef
2.
go back to reference Mischi M, Kalker TA, Korsten EH. Contrast echocardiography for pulmonary blood volume quantification. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:1137–47.PubMedCrossRef Mischi M, Kalker TA, Korsten EH. Contrast echocardiography for pulmonary blood volume quantification. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:1137–47.PubMedCrossRef
3.
go back to reference Brittain EL, Doss LN, Saliba L, Irani W, Byrd 3rd BF, Monahan K. Feasibility and diagnostic potential of pulmonary transit time measurement by contrast echocardiography: a pilot study. Echocardiography. 2015;32:1564–71.PubMedCrossRef Brittain EL, Doss LN, Saliba L, Irani W, Byrd 3rd BF, Monahan K. Feasibility and diagnostic potential of pulmonary transit time measurement by contrast echocardiography: a pilot study. Echocardiography. 2015;32:1564–71.PubMedCrossRef
4.
go back to reference Choi BG, Sanai R, Yang B, Young HA, Mazhari R, Reiner JS, et al. Estimation of cardiac output and pulmonary vascular resistance by contrast echocardiography transit time measurement: a prospective pilot study. Cardiovasc Ultrasound. 2014;12:44.PubMedPubMedCentralCrossRef Choi BG, Sanai R, Yang B, Young HA, Mazhari R, Reiner JS, et al. Estimation of cardiac output and pulmonary vascular resistance by contrast echocardiography transit time measurement: a prospective pilot study. Cardiovasc Ultrasound. 2014;12:44.PubMedPubMedCentralCrossRef
5.
go back to reference Ugander M, Kanski M, Engblom H, Gotberg M, Olivecrona GK, Erlinge D, et al. Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010;256:415–23.PubMedCrossRef Ugander M, Kanski M, Engblom H, Gotberg M, Olivecrona GK, Erlinge D, et al. Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010;256:415–23.PubMedCrossRef
6.
go back to reference Korsten HH, Mischi M, Grouls RJ, Jansen A, van Dantzig JM, Peels K. Quantification in echocardiography. Semin Cardiothorac Vasc Anesth. 2006;10:57–62.PubMedCrossRef Korsten HH, Mischi M, Grouls RJ, Jansen A, van Dantzig JM, Peels K. Quantification in echocardiography. Semin Cardiothorac Vasc Anesth. 2006;10:57–62.PubMedCrossRef
7.
go back to reference Mischi M, Jansen AH, Korsten HH. Identification of cardiovascular dilution systems by contrast ultrasound. Ultrasound Med Biol. 2007;33:439–51.PubMedCrossRef Mischi M, Jansen AH, Korsten HH. Identification of cardiovascular dilution systems by contrast ultrasound. Ultrasound Med Biol. 2007;33:439–51.PubMedCrossRef
8.
go back to reference Herold IH, Soliman Hamad MA, van Assen HC, Bouwman RA, Korsten HH, Mischi M. Pulmonary blood volume measured by contrast enhanced ultrasound: a comparison with transpulmonary thermodilution. Br J Anaesth. 2015;115:53–60.PubMedCrossRef Herold IH, Soliman Hamad MA, van Assen HC, Bouwman RA, Korsten HH, Mischi M. Pulmonary blood volume measured by contrast enhanced ultrasound: a comparison with transpulmonary thermodilution. Br J Anaesth. 2015;115:53–60.PubMedCrossRef
9.
go back to reference Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Invest Radiol. 2000;35:661–71.PubMedCrossRef Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Invest Radiol. 2000;35:661–71.PubMedCrossRef
10.
go back to reference Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10:194–212.PubMedCrossRef Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10:194–212.PubMedCrossRef
11.
go back to reference Mischi M, Kalker T, Korsten HHM. Videodensitometric methods for cardiac output measurements. EURASIP J Appl Signal Processing. 2003;5:479–89.CrossRef Mischi M, Kalker T, Korsten HHM. Videodensitometric methods for cardiac output measurements. EURASIP J Appl Signal Processing. 2003;5:479–89.CrossRef
12.
go back to reference Sheppard CW, Savage LJ. The random walk problem in relation to the physiology of circulatory mixing. Phys Rev. 1951;83:489–90. Sheppard CW, Savage LJ. The random walk problem in relation to the physiology of circulatory mixing. Phys Rev. 1951;83:489–90.
13.
go back to reference Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.PubMedCrossRef Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.PubMedCrossRef
14.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef
15.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRef
16.
go back to reference Shors SM, Cotts WG, Pavlovic-Surjancev B, Francois CJ, Gheorghiade M, Finn JP. Heart failure: evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229:743–8.PubMedCrossRef Shors SM, Cotts WG, Pavlovic-Surjancev B, Francois CJ, Gheorghiade M, Finn JP. Heart failure: evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229:743–8.PubMedCrossRef
17.
go back to reference Streitberger A, Hocke V, Modler P. Measurement of pulmonary transit time in healthy cats by use of ultrasound contrast media “Sonovue(R)”: feasibility, reproducibility, and values in 42 cats. J Vet Cardiol. 2013;15:181–7.PubMedCrossRef Streitberger A, Hocke V, Modler P. Measurement of pulmonary transit time in healthy cats by use of ultrasound contrast media “Sonovue(R)”: feasibility, reproducibility, and values in 42 cats. J Vet Cardiol. 2013;15:181–7.PubMedCrossRef
18.
go back to reference Wise ME. Tracer dilution curves in cardiology and random walk and lognormal distributions. Acta Physiol Pharmacol Neerl. 1966;14:175–204.PubMed Wise ME. Tracer dilution curves in cardiology and random walk and lognormal distributions. Acta Physiol Pharmacol Neerl. 1966;14:175–204.PubMed
19.
go back to reference Piscaglia F, Bolondi L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol. 2006;32:1369–75.PubMedCrossRef Piscaglia F, Bolondi L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol. 2006;32:1369–75.PubMedCrossRef
20.
go back to reference Rognin NG, Frinking P, Costa M, Arditi M. In-vivo perfusion quantification by contrast ultrasound: Validation of the use of linearized video data vs. raw RF data. Ultrasonics Symposium, 2008 IUS Proceedings, IEEE 2008:1690-3. Rognin NG, Frinking P, Costa M, Arditi M. In-vivo perfusion quantification by contrast ultrasound: Validation of the use of linearized video data vs. raw RF data. Ultrasonics Symposium, 2008 IUS Proceedings, IEEE 2008:1690-3.
21.
go back to reference Gauthier TP, Averkiou MA, Leen EL. Perfusion quantification using dynamic contrast-enhanced ultrasound: the impact of dynamic range and gain on time-intensity curves. Ultrasonics. 2011;51:102–6.PubMedCrossRef Gauthier TP, Averkiou MA, Leen EL. Perfusion quantification using dynamic contrast-enhanced ultrasound: the impact of dynamic range and gain on time-intensity curves. Ultrasonics. 2011;51:102–6.PubMedCrossRef
22.
go back to reference Cao JJ, Wang Y, McLaughlin J, Haag E, Rhee P, Passick M, et al. Left ventricular filling pressure assessment using left atrial transit time by cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;4:130–8.PubMedCrossRef Cao JJ, Wang Y, McLaughlin J, Haag E, Rhee P, Passick M, et al. Left ventricular filling pressure assessment using left atrial transit time by cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;4:130–8.PubMedCrossRef
23.
go back to reference Giraud R, Siegenthaler N, Park C, Beutler S, Bendjelid K. Transpulmonary thermodilution curves for detection of shunt. Intensive Care Med. 2010;36:1083–6.PubMedCrossRef Giraud R, Siegenthaler N, Park C, Beutler S, Bendjelid K. Transpulmonary thermodilution curves for detection of shunt. Intensive Care Med. 2010;36:1083–6.PubMedCrossRef
24.
go back to reference Michard F, Alaya S, Medkour F. Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med. 2004;32:308–9.PubMedCrossRef Michard F, Alaya S, Medkour F. Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med. 2004;32:308–9.PubMedCrossRef
25.
26.
go back to reference Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;10:393–407.CrossRef Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;10:393–407.CrossRef
27.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef
28.
go back to reference Nilsson LB, Nilsson JC, Skovgaard LT, Berthelsen PG. Thermodilution cardiac output--are three injections enough? Acta Anaesthesiol Scand. 2004;48:1322–7.PubMedCrossRef Nilsson LB, Nilsson JC, Skovgaard LT, Berthelsen PG. Thermodilution cardiac output--are three injections enough? Acta Anaesthesiol Scand. 2004;48:1322–7.PubMedCrossRef
29.
go back to reference Saporito S, Herold IH, Houthuizen P, van den Bosch HC, Korsten HH, van Assen HC, et al. Automatic indicator dilution curve extraction in dynamic-contrast enhanced imaging using spectral clustering. Phys Med Biol. 2015;60:5225–40.PubMedCrossRef Saporito S, Herold IH, Houthuizen P, van den Bosch HC, Korsten HH, van Assen HC, et al. Automatic indicator dilution curve extraction in dynamic-contrast enhanced imaging using spectral clustering. Phys Med Biol. 2015;60:5225–40.PubMedCrossRef
30.
go back to reference Jones RH, Sabiston Jr DC, Bates BB, Morris JJ, Anderson PA, Goodrich JK. Quantitative radionuclide angiocardiography for determination of chamber to chamber cardiac transit times. Am J Cardiol. 1972;30:855–64.PubMedCrossRef Jones RH, Sabiston Jr DC, Bates BB, Morris JJ, Anderson PA, Goodrich JK. Quantitative radionuclide angiocardiography for determination of chamber to chamber cardiac transit times. Am J Cardiol. 1972;30:855–64.PubMedCrossRef
Metadata
Title
Reliability, repeatability, and reproducibility of pulmonary transit time assessment by contrast enhanced echocardiography
Authors
Ingeborg H. F. Herold
Salvatore Saporito
R. Arthur Bouwman
Patrick Houthuizen
Hans C. van Assen
Massimo Mischi
Hendrikus H. M. Korsten
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2015
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-015-0044-1

Other articles of this Issue 1/2015

Cardiovascular Ultrasound 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.