Skip to main content
Top
Published in: Endocrine 1/2018

01-04-2018 | Original Article

Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes

Authors: A. Aragón-Herrera, S. Feijóo-Bandín, D. Rodríguez-Penas, E. Roselló-Lletí, M. Portolés, M. Rivera, M. Bigazzi, D. Bani, O. Gualillo, J. R. González-Juanatey, F. Lago

Published in: Endocrine | Issue 1/2018

Login to get access

Abstract

Purpose

Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism.

Methods

Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone.

Results

We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported.

Conclusion

Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell’s metabolic responses.
Literature
1.
go back to reference R.A. Bathgate, M.L. Halls, E.T. van der Westhuizen, G.E. Callander, M. Kocan, R.J. Summers, Relaxin family peptides and their receptors. Physiol. Rev. 93, 405–480 (2013)CrossRefPubMed R.A. Bathgate, M.L. Halls, E.T. van der Westhuizen, G.E. Callander, M. Kocan, R.J. Summers, Relaxin family peptides and their receptors. Physiol. Rev. 93, 405–480 (2013)CrossRefPubMed
2.
go back to reference D. Bani, A. Pini, S.K. Yue, Relaxin, insulin and diabetes: an intriguing connection. Curr. Diabetes Rev. 8, 329–335 (2012)CrossRefPubMed D. Bani, A. Pini, S.K. Yue, Relaxin, insulin and diabetes: an intriguing connection. Curr. Diabetes Rev. 8, 329–335 (2012)CrossRefPubMed
3.
go back to reference J.R. Teerlink, G. Cotter, B.A. Davison, G.M. Felker, G. Filippatos, B.H. Greenberg et al., RELAXin in Acute Heart Failure (RELAX-AHF) Investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381, 29–39 (2013)CrossRefPubMed J.R. Teerlink, G. Cotter, B.A. Davison, G.M. Felker, G. Filippatos, B.H. Greenberg et al., RELAXin in Acute Heart Failure (RELAX-AHF) Investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381, 29–39 (2013)CrossRefPubMed
4.
go back to reference J.R. Teerlink, A.A. Voors, P. Ponikowski, P.S. Pang, B.H. Greenberg, G. Filippatos et al., Serelaxin in addition to standard therapy in acute heart failure: rationale and design of the RELAX-AHF-2 study. Eur. J. Heart Fail. 19, 800–809 (2017)CrossRefPubMedPubMedCentral J.R. Teerlink, A.A. Voors, P. Ponikowski, P.S. Pang, B.H. Greenberg, G. Filippatos et al., Serelaxin in addition to standard therapy in acute heart failure: rationale and design of the RELAX-AHF-2 study. Eur. J. Heart Fail. 19, 800–809 (2017)CrossRefPubMedPubMedCentral
5.
go back to reference S.L. Teichman, E. Unemori, J.R. Teerlink, G. Cotter, M. Metra, Relaxin: review of biology and potential role in treating heart failure. Curr. Heart Fail. Rep. 7, 75–82 (2010)CrossRefPubMedPubMedCentral S.L. Teichman, E. Unemori, J.R. Teerlink, G. Cotter, M. Metra, Relaxin: review of biology and potential role in treating heart failure. Curr. Heart Fail. Rep. 7, 75–82 (2010)CrossRefPubMedPubMedCentral
6.
go back to reference R.K. Ghosh, K. Banerjee, R. Tummala, S. Ball, K. Ravakhah, A. Gupta, Serelaxin in acute heart failure: most recent update on clinical and preclinical evidence. Cardiovasc. Ther. 35, 55–63 (2017)CrossRefPubMed R.K. Ghosh, K. Banerjee, R. Tummala, S. Ball, K. Ravakhah, A. Gupta, Serelaxin in acute heart failure: most recent update on clinical and preclinical evidence. Cardiovasc. Ther. 35, 55–63 (2017)CrossRefPubMed
7.
go back to reference N. Sato, C.S. Lam, J.R. Teerlink, B.H. Greenberg, H. Tsutsui, B.H. Oh et al., Evaluating the efficacy, safety, and tolerability of serelaxin when added to standard therapy in Asian patients with acute heart failure: design and rationale of RELAX-AHF-ASIA Trial. J. Card. Fail. 23, 63–71 (2017)CrossRefPubMed N. Sato, C.S. Lam, J.R. Teerlink, B.H. Greenberg, H. Tsutsui, B.H. Oh et al., Evaluating the efficacy, safety, and tolerability of serelaxin when added to standard therapy in Asian patients with acute heart failure: design and rationale of RELAX-AHF-ASIA Trial. J. Card. Fail. 23, 63–71 (2017)CrossRefPubMed
8.
go back to reference S. Singh, R.L. Simpson, R.G. Bennett, Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α). J. Biol. Chem. 290, 950–959 (2015)CrossRefPubMed S. Singh, R.L. Simpson, R.G. Bennett, Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α). J. Biol. Chem. 290, 950–959 (2015)CrossRefPubMed
9.
go back to reference J.S. Bonner, L. Lantier, K.M. Hocking, L. Kang, M. Owolabi, F.D. James et al., Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes 62, 3251–3260 (2013)CrossRefPubMedPubMedCentral J.S. Bonner, L. Lantier, K.M. Hocking, L. Kang, M. Owolabi, F.D. James et al., Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes 62, 3251–3260 (2013)CrossRefPubMedPubMedCentral
10.
go back to reference B. Szepietowska, M. Gorska, M. Szelachowska, Plasma relaxin concentration is related to beta-cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 79, e1–e3 (2008)CrossRefPubMed B. Szepietowska, M. Gorska, M. Szelachowska, Plasma relaxin concentration is related to beta-cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 79, e1–e3 (2008)CrossRefPubMed
11.
go back to reference X. Zhang, M. Zhu, M. Zhao, W. Chen, Y. Fu, Y. Liu et al., The plasma levels of relaxin-2 and relaxin-3 in patients with diabetes. Clin. Biochem. 46, 1713–1716 (2013)CrossRefPubMed X. Zhang, M. Zhu, M. Zhao, W. Chen, Y. Fu, Y. Liu et al., The plasma levels of relaxin-2 and relaxin-3 in patients with diabetes. Clin. Biochem. 46, 1713–1716 (2013)CrossRefPubMed
12.
go back to reference M.H. Ghattas, E.T. Mehanna, N.M. Mesbah, D.M. Abo-Elmatty, Relaxin-3 is associated with metabolic syndrome and its component traits in women. Clin. Biochem. 46, 45–48 (2013)CrossRefPubMed M.H. Ghattas, E.T. Mehanna, N.M. Mesbah, D.M. Abo-Elmatty, Relaxin-3 is associated with metabolic syndrome and its component traits in women. Clin. Biochem. 46, 45–48 (2013)CrossRefPubMed
13.
go back to reference B.M. McGowan, J.S. Minnion, K.G. Murphy, N.E. White, D. Roy, S.A. Stanley et al., Central and peripheral administration of human relaxin-2 to adult male rats inhibits food intake. Diabetes Obes. Metab. 12, 1090–1096 (2010)CrossRefPubMed B.M. McGowan, J.S. Minnion, K.G. Murphy, N.E. White, D. Roy, S.A. Stanley et al., Central and peripheral administration of human relaxin-2 to adult male rats inhibits food intake. Diabetes Obes. Metab. 12, 1090–1096 (2010)CrossRefPubMed
14.
go back to reference C. Lenglos, J. Calvez, E. Timofeeva, Sex-specific effects of relaxin-3 on food intake and brain expression of corticotropin-releasing factor in rats. Endocrinology 156, 523–533 (2015)CrossRefPubMed C. Lenglos, J. Calvez, E. Timofeeva, Sex-specific effects of relaxin-3 on food intake and brain expression of corticotropin-releasing factor in rats. Endocrinology 156, 523–533 (2015)CrossRefPubMed
15.
go back to reference C. Lenglos, A. Mitra, G. Guèvremont, E. Timofeeva, Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 48, 119–132 (2014)CrossRefPubMed C. Lenglos, A. Mitra, G. Guèvremont, E. Timofeeva, Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 48, 119–132 (2014)CrossRefPubMed
16.
go back to reference H. Yamamoto, H. Shimokawa, T. Haga, Y. Fukui, K. Iguchi, K. Unno et al., The expression of relaxin-3 in adipose tissue and its effects on adipogenesis. Protein Pept. Lett. 21, 517–522 (2014)CrossRefPubMed H. Yamamoto, H. Shimokawa, T. Haga, Y. Fukui, K. Iguchi, K. Unno et al., The expression of relaxin-3 in adipose tissue and its effects on adipogenesis. Protein Pept. Lett. 21, 517–522 (2014)CrossRefPubMed
17.
18.
go back to reference J.R. González-Juanatey, M.J. Iglesias, C. Alcaide, R. Piñeiro, F. Lago, Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha1-adrenergic blockade. Circulation 107, 127–131 (2003)CrossRefPubMed J.R. González-Juanatey, M.J. Iglesias, C. Alcaide, R. Piñeiro, F. Lago, Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha1-adrenergic blockade. Circulation 107, 127–131 (2003)CrossRefPubMed
19.
go back to reference R. Piñeiro, M.J. Iglesias, R. Gallego, K. Raghay, S. Eiras, J. Rubio et al., Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579, 5163–5169 (2005)CrossRefPubMed R. Piñeiro, M.J. Iglesias, R. Gallego, K. Raghay, S. Eiras, J. Rubio et al., Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579, 5163–5169 (2005)CrossRefPubMed
20.
go back to reference P.V. Lear, M.J. Iglesias, S. Feijóo-Bandín, D. Rodríguez-Penas, A. Mosquera-Leal, V. García-Rúa et al., Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes. Endocrinology 151, 3286–3298 (2010)CrossRefPubMed P.V. Lear, M.J. Iglesias, S. Feijóo-Bandín, D. Rodríguez-Penas, A. Mosquera-Leal, V. García-Rúa et al., Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes. Endocrinology 151, 3286–3298 (2010)CrossRefPubMed
21.
go back to reference J. Pu, G. Peng, L. Li, H. Na, Y. Liu, P. Liu, Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J. Lipid Res. 52, 1319–1327 (2011)CrossRefPubMedPubMedCentral J. Pu, G. Peng, L. Li, H. Na, Y. Liu, P. Liu, Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J. Lipid Res. 52, 1319–1327 (2011)CrossRefPubMedPubMedCentral
22.
go back to reference L.K.M. Steinbusch, R.W. Schwenk, D.M. Ouwens, M. Diamant, J.F.C. Glatz, J.J.F.P. Luiken, Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol. Life Sci. 68, 2525–2538 (2011)CrossRefPubMedPubMedCentral L.K.M. Steinbusch, R.W. Schwenk, D.M. Ouwens, M. Diamant, J.F.C. Glatz, J.J.F.P. Luiken, Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol. Life Sci. 68, 2525–2538 (2011)CrossRefPubMedPubMedCentral
23.
go back to reference C.T. Lee, J.R. Ussher, A. Mohammad, A. Lam, G.D. Lopaschuk, 5′-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Can. J. Physiol. Pharmacol. 92, 307–314 (2014)CrossRefPubMed C.T. Lee, J.R. Ussher, A. Mohammad, A. Lam, G.D. Lopaschuk, 5′-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Can. J. Physiol. Pharmacol. 92, 307–314 (2014)CrossRefPubMed
24.
go back to reference S.R. Hargett, N.N. Walker, S.R. Keller, Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice. Am. J. Physiol. Endocrino Metab. 310, E276–E288 (2016)CrossRef S.R. Hargett, N.N. Walker, S.R. Keller, Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice. Am. J. Physiol. Endocrino Metab. 310, E276–E288 (2016)CrossRef
25.
go back to reference J. Nonhoff, M. Ricke-Hoch, M. Mueller, B. Stapel, T. Pfeffer, M. Kasten et al., Serelaxin treatment promotes adaptive hypertrophy but does not prevent heart failure in experimental peripartum cardiomyopathy. Cardiovasc. Res. 113, 598–608 (2017)PubMedPubMedCentral J. Nonhoff, M. Ricke-Hoch, M. Mueller, B. Stapel, T. Pfeffer, M. Kasten et al., Serelaxin treatment promotes adaptive hypertrophy but does not prevent heart failure in experimental peripartum cardiomyopathy. Cardiovasc. Res. 113, 598–608 (2017)PubMedPubMedCentral
26.
go back to reference E. Unemori, Serelaxin in clinical development: past, present and future. Br. J. Pharmacol. 174, 921–932 (2017)CrossRefPubMed E. Unemori, Serelaxin in clinical development: past, present and future. Br. J. Pharmacol. 174, 921–932 (2017)CrossRefPubMed
27.
go back to reference A.M. Perna, E. Masini, S. Nistri, T. Bani Sacchi, M. Bigazzi, D. Bani, Human recombinant relaxin reduces heart injury and improves ventricular performance in a swine model of acute myocardial infarction. Ann. N. Y. Acad. Sci. 1041, 431–433 (2005)CrossRefPubMed A.M. Perna, E. Masini, S. Nistri, T. Bani Sacchi, M. Bigazzi, D. Bani, Human recombinant relaxin reduces heart injury and improves ventricular performance in a swine model of acute myocardial infarction. Ann. N. Y. Acad. Sci. 1041, 431–433 (2005)CrossRefPubMed
28.
go back to reference A.M. Perna, E. Masini, S. Nistri, V. Briganti, L. Chiappini, P. Stefano et al., Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 19, 1525–1527 (2005)CrossRefPubMed A.M. Perna, E. Masini, S. Nistri, V. Briganti, L. Chiappini, P. Stefano et al., Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 19, 1525–1527 (2005)CrossRefPubMed
29.
go back to reference C.H. Leo, M. Jelinic, H.C. Parkington, M. Tare, L.J. Parry, Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J. Am. Heart Assoc. 3, e000493 (2014)CrossRefPubMedPubMedCentral C.H. Leo, M. Jelinic, H.C. Parkington, M. Tare, L.J. Parry, Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J. Am. Heart Assoc. 3, e000493 (2014)CrossRefPubMedPubMedCentral
30.
go back to reference T. Dschietzig, A. Brecht, C. Bartsch, G. Baumann, K. Stangl, K. Alexiou, Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc. Res. 95, 97–107 (2012)CrossRefPubMed T. Dschietzig, A. Brecht, C. Bartsch, G. Baumann, K. Stangl, K. Alexiou, Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc. Res. 95, 97–107 (2012)CrossRefPubMed
31.
go back to reference H.H. Ng, C.H. Leo, L.J. Parry, Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by meliorating prostacyclin production in the mouse aorta. Pharmacol. Res. 107, 220–228 (2016)CrossRefPubMed H.H. Ng, C.H. Leo, L.J. Parry, Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by meliorating prostacyclin production in the mouse aorta. Pharmacol. Res. 107, 220–228 (2016)CrossRefPubMed
32.
go back to reference V. Tiyerili, T. Beiert, H. Schatten, B. Camara, J. Jehle, J.W. Schrickel et al., Anti-atherosclerotic effects of serelaxin in apolipoprotein E-deficient mice. Atherosclerosis 251, 430–437 (2016)CrossRefPubMed V. Tiyerili, T. Beiert, H. Schatten, B. Camara, J. Jehle, J.W. Schrickel et al., Anti-atherosclerotic effects of serelaxin in apolipoprotein E-deficient mice. Atherosclerosis 251, 430–437 (2016)CrossRefPubMed
33.
go back to reference C.S. Samuel, E.N. Unemori, I. Mookerjee, R.A. Bathgate, S.L. Layfield, J. Mak et al., Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133 (2004)CrossRefPubMed C.S. Samuel, E.N. Unemori, I. Mookerjee, R.A. Bathgate, S.L. Layfield, J. Mak et al., Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133 (2004)CrossRefPubMed
34.
go back to reference D. Bani, S. Nistri, L. Formigli, E. Meacci, F. Francini, S. Zecchi-Orlandini, Prominent role of relaxin in improving postinfarction heart remodeling. Ann. N. Y. Acad. Sci. 1160, 269–277 (2009)CrossRefPubMed D. Bani, S. Nistri, L. Formigli, E. Meacci, F. Francini, S. Zecchi-Orlandini, Prominent role of relaxin in improving postinfarction heart remodeling. Ann. N. Y. Acad. Sci. 1160, 269–277 (2009)CrossRefPubMed
35.
go back to reference A. Frati, B. Ricci, F. Pierucci, S. Nistri, D. Bani, E. Meacci, Role of sphingosine kinase/S1P axis in ECM remodeling of cardiac cells elicited by relaxin. Mol. Endocrinol. 29, 53–67 (2015)CrossRefPubMed A. Frati, B. Ricci, F. Pierucci, S. Nistri, D. Bani, E. Meacci, Role of sphingosine kinase/S1P axis in ECM remodeling of cardiac cells elicited by relaxin. Mol. Endocrinol. 29, 53–67 (2015)CrossRefPubMed
36.
go back to reference J. Valle Raleigh, A.G. Mauro, T. Devarakonda, C. Marchetti, J. He, E. Kim et al., Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res. 113, 609–619 (2017)PubMed J. Valle Raleigh, A.G. Mauro, T. Devarakonda, C. Marchetti, J. He, E. Kim et al., Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res. 113, 609–619 (2017)PubMed
37.
go back to reference A. Parikh, D. Patel, C.F. McTiernan, W. Xiang, J. Haney, L. Yang et al., Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ. Res. 113, 313–321 (2013)CrossRefPubMedPubMedCentral A. Parikh, D. Patel, C.F. McTiernan, W. Xiang, J. Haney, L. Yang et al., Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ. Res. 113, 313–321 (2013)CrossRefPubMedPubMedCentral
38.
go back to reference B.L. Henry, B. Gabris, Q. Li, B. Martin, M. Giannini, A. Parikh, D. Patel et al., Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na + channels. Heart Rhythm. 13, 983–991 (2016)CrossRefPubMed B.L. Henry, B. Gabris, Q. Li, B. Martin, M. Giannini, A. Parikh, D. Patel et al., Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na + channels. Heart Rhythm. 13, 983–991 (2016)CrossRefPubMed
39.
go back to reference L. Formigli, F. Francini, L. Chiappini, S. Zecchi-Orlandini, D. Bani, Relaxin favors the morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture. Ann. N. Y. Acad. Sci. 1041, 444–445 (2005)CrossRefPubMed L. Formigli, F. Francini, L. Chiappini, S. Zecchi-Orlandini, D. Bani, Relaxin favors the morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture. Ann. N. Y. Acad. Sci. 1041, 444–445 (2005)CrossRefPubMed
40.
go back to reference X.L. Moore, S.L. Tan, C.Y. Lo, L. Fang, Y.D. Su, X.M. Gao et al., Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology 148, 1582–1589 (2007)CrossRefPubMed X.L. Moore, S.L. Tan, C.Y. Lo, L. Fang, Y.D. Su, X.M. Gao et al., Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology 148, 1582–1589 (2007)CrossRefPubMed
41.
go back to reference L. Formigli, F. Francini, S. Nistri, M. Margheri, G. Luciani, F. Naro et al., Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J. Mol. Cell Cardiol. 47, 335–345 (2009)CrossRefPubMed L. Formigli, F. Francini, S. Nistri, M. Margheri, G. Luciani, F. Naro et al., Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J. Mol. Cell Cardiol. 47, 335–345 (2009)CrossRefPubMed
42.
go back to reference S. Nistri, A. Pini, C. Sassoli, R. Squecco, F. Francini, L. Formigli et al., Relaxin promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac regeneration. J. Cell Mol. Med. 16, 507–519 (2012)CrossRefPubMedPubMedCentral S. Nistri, A. Pini, C. Sassoli, R. Squecco, F. Francini, L. Formigli et al., Relaxin promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac regeneration. J. Cell Mol. Med. 16, 507–519 (2012)CrossRefPubMedPubMedCentral
43.
go back to reference C. Sassoli, F. Chellini, A. Pini, A. Tani, S. Nistri, D. Nosi et al., Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896 (2013)CrossRefPubMedPubMedCentral C. Sassoli, F. Chellini, A. Pini, A. Tani, S. Nistri, D. Nosi et al., Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896 (2013)CrossRefPubMedPubMedCentral
44.
go back to reference G. Boccalini, C. Sassoli, L. Formigli, D. Bani, S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway. FASEB J. 29, 239–249 (2015)CrossRefPubMed G. Boccalini, C. Sassoli, L. Formigli, D. Bani, S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway. FASEB J. 29, 239–249 (2015)CrossRefPubMed
45.
go back to reference T. Dschietzig, C. Richter, C. Bartsch, M. Laule, F.P. Armbruster, G. Baumann et al., The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 15, 2187–2195 (2001)CrossRefPubMed T. Dschietzig, C. Richter, C. Bartsch, M. Laule, F.P. Armbruster, G. Baumann et al., The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 15, 2187–2195 (2001)CrossRefPubMed
46.
go back to reference X. Zhang, X. Ma, M. Zhao, B. Zhang, J. Chi, W. Liu et al., H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 108, 59–67 (2015)CrossRefPubMed X. Zhang, X. Ma, M. Zhao, B. Zhang, J. Chi, W. Liu et al., H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 108, 59–67 (2015)CrossRefPubMed
47.
go back to reference A. Pini, G. Boccalini, M.C. Baccari, M. Becatti, R. Garella, C. Fiorillo et al., Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J. Cell Mol. Med. 20, 891–902 (2016)CrossRefPubMedPubMedCentral A. Pini, G. Boccalini, M.C. Baccari, M. Becatti, R. Garella, C. Fiorillo et al., Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2 (serelaxin). J. Cell Mol. Med. 20, 891–902 (2016)CrossRefPubMedPubMedCentral
48.
go back to reference L.H. Bergeron, J.M. Willcox, F.J. Alibhai, B.J. Connell, T.M. Saleh, B.C. Wilson et al., Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 156, 638–646 (2015)CrossRefPubMed L.H. Bergeron, J.M. Willcox, F.J. Alibhai, B.J. Connell, T.M. Saleh, B.C. Wilson et al., Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 156, 638–646 (2015)CrossRefPubMed
49.
go back to reference X. Ma, S. Han, W. Zhang, Y.J. Fan, M.N. Liu, A.Y. Liu et al., Protection of cultured human hepatocytes from hydrogen peroxide-induced apoptosis by relaxin-3. Mol. Med Rep. 11, 1228–1234 (2015)CrossRefPubMed X. Ma, S. Han, W. Zhang, Y.J. Fan, M.N. Liu, A.Y. Liu et al., Protection of cultured human hepatocytes from hydrogen peroxide-induced apoptosis by relaxin-3. Mol. Med Rep. 11, 1228–1234 (2015)CrossRefPubMed
50.
go back to reference K. Domińska, T. Ochędalski, K. Kowalska, Z.E. Matysiak-Burzyńska, E. Płuciennik, A.W. Piastowska-Ciesielska, Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells. Int. J. Oncol. 48, 2619–2628 (2016)CrossRefPubMed K. Domińska, T. Ochędalski, K. Kowalska, Z.E. Matysiak-Burzyńska, E. Płuciennik, A.W. Piastowska-Ciesielska, Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells. Int. J. Oncol. 48, 2619–2628 (2016)CrossRefPubMed
51.
go back to reference X.C. Xie, N. Zhao, Q.H. Xu, X. Yang, W.K. Xia, Q. Chen et al., Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway. Apoptosis 22, 769–776 (2017)CrossRefPubMed X.C. Xie, N. Zhao, Q.H. Xu, X. Yang, W.K. Xia, Q. Chen et al., Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway. Apoptosis 22, 769–776 (2017)CrossRefPubMed
52.
go back to reference A. Fukushima, K. Milner, A. Gupta, G.D. Lopaschuk, Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets. Curr. Pharm. Des. 21, 3654–3664 (2015)CrossRefPubMed A. Fukushima, K. Milner, A. Gupta, G.D. Lopaschuk, Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets. Curr. Pharm. Des. 21, 3654–3664 (2015)CrossRefPubMed
53.
go back to reference M. Collino, M. Rogazzo, A. Pini, E. Benetti, A.C. Rosa, F. Chiazza et al., Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J. Cell. Mol. Med. 17, 1494–1505 (2013)CrossRefPubMedPubMedCentral M. Collino, M. Rogazzo, A. Pini, E. Benetti, A.C. Rosa, F. Chiazza et al., Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J. Cell. Mol. Med. 17, 1494–1505 (2013)CrossRefPubMedPubMedCentral
54.
go back to reference X.X. Shuai, Y.D. Meng, Y.X. Lu, G.H. Su, X.F. Tao, J. Han et al., Relaxin-2 improves diastolic function of pressure-overloaded rats via phospholamban by activating Akt. Int. J. Cardiol. 218, 305–311 (2016)CrossRefPubMed X.X. Shuai, Y.D. Meng, Y.X. Lu, G.H. Su, X.F. Tao, J. Han et al., Relaxin-2 improves diastolic function of pressure-overloaded rats via phospholamban by activating Akt. Int. J. Cardiol. 218, 305–311 (2016)CrossRefPubMed
55.
go back to reference H.J. Sun, D. Chen, Y. Han, Y.B. Zhou, J.J. Wang, Q. Chen et al., Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology 103, 247–256 (2016)CrossRefPubMed H.J. Sun, D. Chen, Y. Han, Y.B. Zhou, J.J. Wang, Q. Chen et al., Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology 103, 247–256 (2016)CrossRefPubMed
56.
go back to reference O. Ogunleye, B. Campo, D. Herrera, E.D. Post Uiterweer, K.P. Conrad, Relaxin confers cytotrophoblast protection from hypoxia-reoxygenation injury through the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R559–R568 (2017)CrossRefPubMed O. Ogunleye, B. Campo, D. Herrera, E.D. Post Uiterweer, K.P. Conrad, Relaxin confers cytotrophoblast protection from hypoxia-reoxygenation injury through the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R559–R568 (2017)CrossRefPubMed
57.
go back to reference X.L. Moore, Y. Su, Y. Fan, Y.Y. Zhang, E.A. Woodcock, A.M. Dart et al., Diverse regulation of cardiac expression of relaxin receptor by α1- and β1-adrenoceptors. Cardiovasc. Drugs Ther. 28, 221–228 (2014)CrossRefPubMed X.L. Moore, Y. Su, Y. Fan, Y.Y. Zhang, E.A. Woodcock, A.M. Dart et al., Diverse regulation of cardiac expression of relaxin receptor by α1- and β1-adrenoceptors. Cardiovasc. Drugs Ther. 28, 221–228 (2014)CrossRefPubMed
58.
go back to reference M.A. Sussman, M. Völkers, K. Fischer, B. Bailey, C.T. Cottage, S. Din et al., Myocardial AKT: the omnipresent nexus. Physiol. Rev. 91, 1023–1070 (2011)CrossRefPubMedPubMedCentral M.A. Sussman, M. Völkers, K. Fischer, B. Bailey, C.T. Cottage, S. Din et al., Myocardial AKT: the omnipresent nexus. Physiol. Rev. 91, 1023–1070 (2011)CrossRefPubMedPubMedCentral
59.
go back to reference G.D. Cartee, J.F. Wojtaszewski, Role of AKT substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab. 32, 557–566 (2007)CrossRefPubMed G.D. Cartee, J.F. Wojtaszewski, Role of AKT substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab. 32, 557–566 (2007)CrossRefPubMed
60.
go back to reference N. Fujii, N. Jessen, L.J. Goodyear, AMP-activated protein kinase and the regulation of glucose transport. Am. J. Physiol. Endocrinol. Metab. 291, E867–E877 (2006)CrossRefPubMed N. Fujii, N. Jessen, L.J. Goodyear, AMP-activated protein kinase and the regulation of glucose transport. Am. J. Physiol. Endocrinol. Metab. 291, E867–E877 (2006)CrossRefPubMed
61.
go back to reference I.P. Salt, D.G. Hardie, AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ. Res. 120, 1825–1841 (2017)CrossRefPubMedPubMedCentral I.P. Salt, D.G. Hardie, AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ. Res. 120, 1825–1841 (2017)CrossRefPubMedPubMedCentral
62.
go back to reference R.R. Russell 3rd, R. Bergeron, G.I. Shulman, L.H. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999)PubMed R.R. Russell 3rd, R. Bergeron, G.I. Shulman, L.H. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999)PubMed
63.
go back to reference H.F. Kramer, C.A. Witczak, N. Fujii, N. Jessen, E.B. Taylor, D.E. Arnolds et al., Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(2), 067–2076 (2006) H.F. Kramer, C.A. Witczak, N. Fujii, N. Jessen, E.B. Taylor, D.E. Arnolds et al., Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(2), 067–2076 (2006)
64.
go back to reference A. Ginion, J. Auquier, C.R. Benton, C. Mouton, J.L. Vanoverschelde, L. Hue et al., Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 301, H469–H477 (2011)CrossRefPubMed A. Ginion, J. Auquier, C.R. Benton, C. Mouton, J.L. Vanoverschelde, L. Hue et al., Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol. 301, H469–H477 (2011)CrossRefPubMed
Metadata
Title
Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes
Authors
A. Aragón-Herrera
S. Feijóo-Bandín
D. Rodríguez-Penas
E. Roselló-Lletí
M. Portolés
M. Rivera
M. Bigazzi
D. Bani
O. Gualillo
J. R. González-Juanatey
F. Lago
Publication date
01-04-2018
Publisher
Springer US
Published in
Endocrine / Issue 1/2018
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1534-3

Other articles of this Issue 1/2018

Endocrine 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.