Skip to main content
Top
Published in: Autoimmunity Highlights 1/2018

Open Access 01-12-2018 | Review Article

Regulatory B and T lymphocytes in multiple sclerosis: friends or foes?

Authors: Georgios K. Vasileiadis, Efthymios Dardiotis, Athanasios Mavropoulos, Zisis Tsouris, Vana Tsimourtou, Dimitrios P. Bogdanos, Lazaros I. Sakkas, Georgios M. Hadjigeorgiou

Published in: Autoimmunity Highlights | Issue 1/2018

Login to get access

Abstract

Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Literature
1.
go back to reference Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517PubMed Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517PubMed
2.
go back to reference Giovannoni G, Miller DH (1999) Multiple sclerosis and its treatment. J R Coll Physicians Lond 33(4):315–322PubMed Giovannoni G, Miller DH (1999) Multiple sclerosis and its treatment. J R Coll Physicians Lond 33(4):315–322PubMed
3.
go back to reference Francis DA (2001) Glatiramer acetate (Copaxone). Int J Clin Pract 55(6):394–398PubMed Francis DA (2001) Glatiramer acetate (Copaxone). Int J Clin Pract 55(6):394–398PubMed
4.
go back to reference Signori A, Gallo F, Bovis F, Di Tullio N, Maietta I, Sormani MP (2016) Long-term impact of interferon or Glatiramer acetate in multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord 6:57–63PubMed Signori A, Gallo F, Bovis F, Di Tullio N, Maietta I, Sormani MP (2016) Long-term impact of interferon or Glatiramer acetate in multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord 6:57–63PubMed
5.
go back to reference Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E (2013) Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One 8(7):e66308PubMedPubMedCentral Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E (2013) Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One 8(7):e66308PubMedPubMedCentral
6.
go back to reference Havrdova E, Horakova D, Kovarova I (2015) Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord 8(1):31–45PubMedPubMedCentral Havrdova E, Horakova D, Kovarova I (2015) Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther Adv Neurol Disord 8(1):31–45PubMedPubMedCentral
7.
go back to reference Coles AJ (2013) Alemtuzumab therapy for multiple sclerosis. Neurotherapeutics 10(1):29–33PubMed Coles AJ (2013) Alemtuzumab therapy for multiple sclerosis. Neurotherapeutics 10(1):29–33PubMed
8.
go back to reference Blumenfeld S, Staun-Ram E, Miller A (2016) Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFbeta in patients with multiple sclerosis. J Autoimmun 70:40–51PubMed Blumenfeld S, Staun-Ram E, Miller A (2016) Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFbeta in patients with multiple sclerosis. J Autoimmun 70:40–51PubMed
9.
go back to reference Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfar A, Wiendl H, Klotz L (2016) Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 3(1):e183 Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfar A, Wiendl H, Klotz L (2016) Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflammation 3(1):e183
10.
go back to reference Oh J, O’Connor PW (2014) Teriflunomide in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord 7(5):239–252PubMedPubMedCentral Oh J, O’Connor PW (2014) Teriflunomide in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord 7(5):239–252PubMedPubMedCentral
12.
go back to reference Midaglia L, Mora L, Mulero P, Sastre-Garriga J, Montalban X (2018) Rituximab: its efficacy, effectiveness and safety in the treatment of multiple sclerosis. Rev Neurol 66(1):25–32PubMed Midaglia L, Mora L, Mulero P, Sastre-Garriga J, Montalban X (2018) Rituximab: its efficacy, effectiveness and safety in the treatment of multiple sclerosis. Rev Neurol 66(1):25–32PubMed
13.
go back to reference Sokratous M, Dardiotis E, Tsouris Z, Bellou E, Michalopoulou A, Siokas V et al (2016) Deciphering the role of DNA methylation in multiple sclerosis: emerging issues. Auto Immun Highlights 7(1):12PubMedPubMedCentral Sokratous M, Dardiotis E, Tsouris Z, Bellou E, Michalopoulou A, Siokas V et al (2016) Deciphering the role of DNA methylation in multiple sclerosis: emerging issues. Auto Immun Highlights 7(1):12PubMedPubMedCentral
14.
go back to reference Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple sclerosis: mechanisms and immunotherapy. Neuron 97(4):742–768PubMed Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple sclerosis: mechanisms and immunotherapy. Neuron 97(4):742–768PubMed
15.
go back to reference Naegele M, Martin R (2014) The good and the bad of neuroinflammation in multiple sclerosis. Handb Clin Neurol 122:59–87PubMed Naegele M, Martin R (2014) The good and the bad of neuroinflammation in multiple sclerosis. Handb Clin Neurol 122:59–87PubMed
16.
go back to reference Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169PubMedPubMedCentral Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169PubMedPubMedCentral
17.
go back to reference Drulovic J, Savic E, Pekmezovic T, Mesaros S, Stojsavljevic N, Dujmovic-Basuroski I et al (2009) Expression of Th1 and Th17 cytokines and transcription factors in multiple sclerosis patients: does baseline T-bet mRNA predict the response to interferon-beta treatment? J Neuroimmunol 215(1–2):90–95PubMed Drulovic J, Savic E, Pekmezovic T, Mesaros S, Stojsavljevic N, Dujmovic-Basuroski I et al (2009) Expression of Th1 and Th17 cytokines and transcription factors in multiple sclerosis patients: does baseline T-bet mRNA predict the response to interferon-beta treatment? J Neuroimmunol 215(1–2):90–95PubMed
18.
go back to reference Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, Tervaert JW et al (2011) Th17 expansion in MS patients is counterbalanced by an expanded CD39+regulatory T cell population during remission but not during relapse. J Neuroimmunol 240–241:97–103PubMed Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, Tervaert JW et al (2011) Th17 expansion in MS patients is counterbalanced by an expanded CD39+regulatory T cell population during remission but not during relapse. J Neuroimmunol 240–241:97–103PubMed
20.
go back to reference von Budingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J et al (2012) B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Investig 122(12):4533–4543 von Budingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J et al (2012) B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Investig 122(12):4533–4543
21.
go back to reference Staun-Ram E, Miller A (2017) Effector and regulatory B cells in multiple sclerosis. Clin Immunol 184:11–25PubMed Staun-Ram E, Miller A (2017) Effector and regulatory B cells in multiple sclerosis. Clin Immunol 184:11–25PubMed
22.
go back to reference Sospedra M (2018) B cells in multiple sclerosis. Curr Opin Neurol 31(3):256–262PubMed Sospedra M (2018) B cells in multiple sclerosis. Curr Opin Neurol 31(3):256–262PubMed
23.
go back to reference Batista FD, Harwood NE (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9(1):15–27PubMed Batista FD, Harwood NE (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9(1):15–27PubMed
24.
go back to reference Meinl E, Krumbholz M, Hohlfeld R (2006) B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 59(6):880–892PubMed Meinl E, Krumbholz M, Hohlfeld R (2006) B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 59(6):880–892PubMed
25.
go back to reference Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S et al (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010PubMedPubMedCentral Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S et al (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010PubMedPubMedCentral
26.
go back to reference Mielle J, Audo R, Hahne M, Macia L, Combe B, Morel J et al (2018) IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol 9:961PubMedPubMedCentral Mielle J, Audo R, Hahne M, Macia L, Combe B, Morel J et al (2018) IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol 9:961PubMedPubMedCentral
27.
go back to reference Romme Christensen J, Bornsen L, Hesse D, Krakauer M, Sorensen PS, Sondergaard HB et al (2012) Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 9:215PubMedPubMedCentral Romme Christensen J, Bornsen L, Hesse D, Krakauer M, Sorensen PS, Sondergaard HB et al (2012) Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 9:215PubMedPubMedCentral
28.
go back to reference Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V (2015) B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol 6:642PubMedPubMedCentral Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V (2015) B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol 6:642PubMedPubMedCentral
30.
go back to reference Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164PubMed Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164PubMed
31.
go back to reference Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS (2015) Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun Rev 14(2):105–116PubMed Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS (2015) Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun Rev 14(2):105–116PubMed
32.
go back to reference Su H, Longhi MS, Wang P, Vergani D, Ma Y (2012) Human CD4+CD25(high)CD127 (low/neg) regulatory T cells. Methods Mol Biol 806:287–299PubMed Su H, Longhi MS, Wang P, Vergani D, Ma Y (2012) Human CD4+CD25(high)CD127 (low/neg) regulatory T cells. Methods Mol Biol 806:287–299PubMed
33.
go back to reference Yates J, Rovis F, Mitchell P, Afzali B, Tsang J, Garin M et al (2007) The maintenance of human CD4+CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol 19(6):785–799PubMed Yates J, Rovis F, Mitchell P, Afzali B, Tsang J, Garin M et al (2007) The maintenance of human CD4+CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol 19(6):785–799PubMed
34.
go back to reference Lee J, Park N, Park JY, Kaplan BLF, Pruett SB, Park JW et al (2018) Induction of immunosuppressive CD8(+)CD25(+)FOXP3(+) regulatory T cells by suboptimal stimulation with staphylococcal enterotoxin C1. J Immunol 200(2):669–680PubMed Lee J, Park N, Park JY, Kaplan BLF, Pruett SB, Park JW et al (2018) Induction of immunosuppressive CD8(+)CD25(+)FOXP3(+) regulatory T cells by suboptimal stimulation with staphylococcal enterotoxin C1. J Immunol 200(2):669–680PubMed
35.
go back to reference Saverino D, Simone R, Bagnasco M, Pesce G (2010) The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Auto Immun Highlights 1(2):73–81PubMedPubMedCentral Saverino D, Simone R, Bagnasco M, Pesce G (2010) The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Auto Immun Highlights 1(2):73–81PubMedPubMedCentral
36.
go back to reference Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310PubMedPubMedCentral Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310PubMedPubMedCentral
37.
go back to reference Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX et al (2017) The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 16(10):1058–1070PubMed Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX et al (2017) The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 16(10):1058–1070PubMed
38.
go back to reference Henderson JG, Opejin A, Jones A, Gross C, Hawiger D (2015) CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42(3):471–483PubMed Henderson JG, Opejin A, Jones A, Gross C, Hawiger D (2015) CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42(3):471–483PubMed
39.
go back to reference Ono M, Tanaka RJ (2016) Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective. Immunol Cell Biol 94(1):3–10PubMed Ono M, Tanaka RJ (2016) Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective. Immunol Cell Biol 94(1):3–10PubMed
40.
go back to reference Xing C, Ma N, Xiao H, Wang X, Zheng M, Han G et al (2015) Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis. J Leukoc Biol 97(3):547–556PubMed Xing C, Ma N, Xiao H, Wang X, Zheng M, Han G et al (2015) Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis. J Leukoc Biol 97(3):547–556PubMed
41.
go back to reference Zheng M, Xing C, Xiao H, Ma N, Wang X, Han G et al (2014) Interaction of CD5 and CD72 is involved in regulatory T and B cell homeostasis. Immunol Invest 43(7):705–716PubMed Zheng M, Xing C, Xiao H, Ma N, Wang X, Han G et al (2014) Interaction of CD5 and CD72 is involved in regulatory T and B cell homeostasis. Immunol Invest 43(7):705–716PubMed
42.
go back to reference Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMed Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMed
43.
go back to reference Devaud C, Darcy PK, Kershaw MH (2014) Foxp3 expression in T regulatory cells and other cell lineages. Cancer Immunol Immunother CII 63(9):869–876PubMed Devaud C, Darcy PK, Kershaw MH (2014) Foxp3 expression in T regulatory cells and other cell lineages. Cancer Immunol Immunother CII 63(9):869–876PubMed
44.
go back to reference Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al (2007) Expression of ectonucleotidase CD39 by Foxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232PubMed Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al (2007) Expression of ectonucleotidase CD39 by Foxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232PubMed
45.
go back to reference Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S et al (2009) CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A 106(33):13974–13979PubMedPubMedCentral Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S et al (2009) CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A 106(33):13974–13979PubMedPubMedCentral
46.
go back to reference Bushell A, Wood K (2007) GITR ligation blocks allograft protection by induced CD25+CD4+ regulatory T cells without enhancing effector T-cell function. Am J Transpl 7(4):759–768 Bushell A, Wood K (2007) GITR ligation blocks allograft protection by induced CD25+CD4+ regulatory T cells without enhancing effector T-cell function. Am J Transpl 7(4):759–768
47.
go back to reference Anvari S, Grimbergen A, Davis CM, Makedonas G (2017) Protein transport inhibitors downregulate the expression of LAG-3 on regulatory T cells. J Immunol Methods 447:47–51PubMed Anvari S, Grimbergen A, Davis CM, Makedonas G (2017) Protein transport inhibitors downregulate the expression of LAG-3 on regulatory T cells. J Immunol Methods 447:47–51PubMed
48.
go back to reference Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758PubMed Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758PubMed
49.
go back to reference Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al (2009) Functional delineation and differentiation dynamics of human CD4+T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911PubMed Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al (2009) Functional delineation and differentiation dynamics of human CD4+T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911PubMed
50.
go back to reference Okamura T, Yamamoto K, Fujio K (2018) Early growth response gene 2-expressing CD4(+)LAG3(+) regulatory T cells: the therapeutic potential for treating autoimmune diseases. Front Immunol 9:340PubMedPubMedCentral Okamura T, Yamamoto K, Fujio K (2018) Early growth response gene 2-expressing CD4(+)LAG3(+) regulatory T cells: the therapeutic potential for treating autoimmune diseases. Front Immunol 9:340PubMedPubMedCentral
51.
52.
go back to reference Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A (2016) Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37(11):803–811PubMed Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A (2016) Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37(11):803–811PubMed
53.
54.
go back to reference Mayo L, Cunha AP, Madi A, Beynon V, Yang Z, Alvarez JI et al (2016) IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain 139(Pt 7):1939–1957PubMedPubMedCentral Mayo L, Cunha AP, Madi A, Beynon V, Yang Z, Alvarez JI et al (2016) IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain 139(Pt 7):1939–1957PubMedPubMedCentral
55.
go back to reference Fujio K, Yamamoto K, Okamura T (2017) Overview of LAG-3-expressing, IL-10-producing regulatory T cells. Curr Top Microbiol Immunol 410:29–45PubMed Fujio K, Yamamoto K, Okamura T (2017) Overview of LAG-3-expressing, IL-10-producing regulatory T cells. Curr Top Microbiol Immunol 410:29–45PubMed
56.
go back to reference Roncarolo MG, Gregori S, Bacchetta R, Battaglia M (2014) Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 380:39–68PubMed Roncarolo MG, Gregori S, Bacchetta R, Battaglia M (2014) Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 380:39–68PubMed
57.
go back to reference Zhang H, Kong H, Zeng X, Guo L, Sun X, He S (2014) Subsets of regulatory T cells and their roles in allergy. J Transl Med 12:125PubMedPubMedCentral Zhang H, Kong H, Zeng X, Guo L, Sun X, He S (2014) Subsets of regulatory T cells and their roles in allergy. J Transl Med 12:125PubMedPubMedCentral
58.
go back to reference Park JH, Eberl G (2018) Type 3 regulatory T cells at the interface of symbiosis. J Microbiol 56(3):163–171PubMed Park JH, Eberl G (2018) Type 3 regulatory T cells at the interface of symbiosis. J Microbiol 56(3):163–171PubMed
59.
go back to reference Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M et al (2016) Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol 9(2):444–457PubMed Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M et al (2016) Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol 9(2):444–457PubMed
61.
go back to reference Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569PubMed Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569PubMed
62.
go back to reference Choi J, Leung PS, Bowlus C, Gershwin ME (2015) IL-35 and autoimmunity: a comprehensive perspective. Clin Rev Allergy Immunol 49(3):327–332PubMed Choi J, Leung PS, Bowlus C, Gershwin ME (2015) IL-35 and autoimmunity: a comprehensive perspective. Clin Rev Allergy Immunol 49(3):327–332PubMed
63.
go back to reference Sakkas LI, Mavropoulos A, Perricone C, Bogdanos DP (2018) IL-35: a new immunomodulator in autoimmune rheumatic diseases. Immunol Res 66(3):305–312PubMed Sakkas LI, Mavropoulos A, Perricone C, Bogdanos DP (2018) IL-35: a new immunomodulator in autoimmune rheumatic diseases. Immunol Res 66(3):305–312PubMed
64.
go back to reference Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J et al (2017) Reciprocal expression of IL-35 and IL-10 defines two distinct effector treg subsets that are required for maintenance of immune tolerance. Cell Rep 21(7):1853–1869PubMed Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J et al (2017) Reciprocal expression of IL-35 and IL-10 defines two distinct effector treg subsets that are required for maintenance of immune tolerance. Cell Rep 21(7):1853–1869PubMed
65.
go back to reference Choi JK, Dambuza IM, He C, Yu CR, Uche AN, Mattapallil MJ et al (2017) IL-12p35 inhibits neuroinflammation and ameliorates autoimmune encephalomyelitis. Front Immunol 8:1258PubMedPubMedCentral Choi JK, Dambuza IM, He C, Yu CR, Uche AN, Mattapallil MJ et al (2017) IL-12p35 inhibits neuroinflammation and ameliorates autoimmune encephalomyelitis. Front Immunol 8:1258PubMedPubMedCentral
66.
go back to reference Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G (2015) Animal models of multiple sclerosis. Eur J Pharmacol 759:182–191PubMedPubMedCentral Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G (2015) Animal models of multiple sclerosis. Eur J Pharmacol 759:182–191PubMedPubMedCentral
67.
go back to reference Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39PubMedPubMedCentral Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39PubMedPubMedCentral
68.
go back to reference Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R et al (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50PubMed Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R et al (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50PubMed
69.
go back to reference Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L et al (2004) Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 101(43):15434–15439PubMedPubMedCentral Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L et al (2004) Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 101(43):15434–15439PubMedPubMedCentral
70.
go back to reference Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169(9):4712–4716PubMed Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169(9):4712–4716PubMed
71.
go back to reference Korn T, Anderson AC, Bettelli E, Oukka M (2007) The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 191(1–2):51–60PubMedPubMedCentral Korn T, Anderson AC, Bettelli E, Oukka M (2007) The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 191(1–2):51–60PubMedPubMedCentral
72.
go back to reference Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A et al (2004) Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+T cells: analysis using depleting antibodies. J Autoimmun 23(1):1–7PubMed Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A et al (2004) Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+T cells: analysis using depleting antibodies. J Autoimmun 23(1):1–7PubMed
73.
go back to reference Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y (2015) miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6. Neuromolecular Med 17(1):24–34PubMed Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y (2015) miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6. Neuromolecular Med 17(1):24–34PubMed
74.
go back to reference Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14(1):117PubMedPubMedCentral Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14(1):117PubMedPubMedCentral
75.
go back to reference Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961PubMed Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961PubMed
76.
go back to reference Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA (2015) Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. J Mol Neurosci 57(4):605–613PubMed Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA (2015) Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. J Mol Neurosci 57(4):605–613PubMed
77.
go back to reference Kim YC, Zhang AH, Yoon J, Culp WE, Lees JR, Wucherpfennig KW et al (2018) Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J Autoimmun 92:77–86PubMedPubMedCentral Kim YC, Zhang AH, Yoon J, Culp WE, Lees JR, Wucherpfennig KW et al (2018) Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J Autoimmun 92:77–86PubMedPubMedCentral
78.
go back to reference LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J et al (2018) Tolerogenic Nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol 9:281PubMedPubMedCentral LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J et al (2018) Tolerogenic Nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol 9:281PubMedPubMedCentral
79.
go back to reference Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H (2007) Increased frequency of CD4+CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147(3):412–418PubMedPubMedCentral Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H (2007) Increased frequency of CD4+CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147(3):412–418PubMedPubMedCentral
80.
go back to reference Anderton SM (2010) Treg and T-effector cells in autoimmune CNS inflammation: a delicate balance, easily disturbed. Eur J Immunol 40(12):3321–3324PubMed Anderton SM (2010) Treg and T-effector cells in autoimmune CNS inflammation: a delicate balance, easily disturbed. Eur J Immunol 40(12):3321–3324PubMed
81.
go back to reference Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16(2):58–68PubMed Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16(2):58–68PubMed
82.
go back to reference Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979PubMedPubMedCentral Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979PubMedPubMedCentral
83.
84.
go back to reference Ochoa-Reparaz J, Kasper LH (2017) The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res 179:126–138PubMed Ochoa-Reparaz J, Kasper LH (2017) The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res 179:126–138PubMed
85.
go back to reference Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL et al (2008) Compromised CD4+CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123(1):79–89PubMedPubMedCentral Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL et al (2008) Compromised CD4+CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123(1):79–89PubMedPubMedCentral
86.
go back to reference Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M, Marti A et al (2009) Regulatory T cells fail to suppress CD4T+-bet+T cells in relapsing multiple sclerosis patients. Immunology 127(3):418–428PubMedPubMedCentral Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M, Marti A et al (2009) Regulatory T cells fail to suppress CD4T+-bet+T cells in relapsing multiple sclerosis patients. Immunology 127(3):418–428PubMedPubMedCentral
87.
go back to reference Haas J, Fritzsching B, Trubswetter P, Korporal M, Milkova L, Fritz B et al (2007) Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol 179(2):1322–1330PubMed Haas J, Fritzsching B, Trubswetter P, Korporal M, Milkova L, Fritz B et al (2007) Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol 179(2):1322–1330PubMed
88.
go back to reference Nicoletti F, Patti F, Cocuzza C, Zaccone P, Nicoletti A, Di Marco R et al (1996) Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol 70(1):87–90PubMed Nicoletti F, Patti F, Cocuzza C, Zaccone P, Nicoletti A, Di Marco R et al (1996) Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol 70(1):87–90PubMed
89.
go back to reference Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675PubMedPubMedCentral Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675PubMedPubMedCentral
90.
go back to reference Kitz A, Dominguez-Villar M (2017) Molecular mechanisms underlying Th1-like Treg generation and function. Cell Mol Life Sci 74(22):4059–4075PubMedPubMedCentral Kitz A, Dominguez-Villar M (2017) Molecular mechanisms underlying Th1-like Treg generation and function. Cell Mol Life Sci 74(22):4059–4075PubMedPubMedCentral
91.
go back to reference McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926PubMed McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926PubMed
92.
go back to reference De Matteis S, Molinari C, Abbati G, Rossi T, Napolitano R, Ghetti M et al (2018) Immunosuppressive Treg cells acquire the phenotype of effector-T cells in chronic lymphocytic leukemia patients. J Transl Med 16(1):172PubMedPubMedCentral De Matteis S, Molinari C, Abbati G, Rossi T, Napolitano R, Ghetti M et al (2018) Immunosuppressive Treg cells acquire the phenotype of effector-T cells in chronic lymphocytic leukemia patients. J Transl Med 16(1):172PubMedPubMedCentral
93.
go back to reference Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C et al (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249PubMedPubMedCentral Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C et al (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249PubMedPubMedCentral
94.
go back to reference Kleinewietfeld M, Hafler DA (2013) The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 25(4):305–312PubMedPubMedCentral Kleinewietfeld M, Hafler DA (2013) The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 25(4):305–312PubMedPubMedCentral
95.
go back to reference Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421(6921):388–392PubMed Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421(6921):388–392PubMed
96.
go back to reference Mauri C, Menon M (2017) Human regulatory B cells in health and disease: therapeutic potential. J Clin Investig 127(3):772–779PubMedPubMedCentral Mauri C, Menon M (2017) Human regulatory B cells in health and disease: therapeutic potential. J Clin Investig 127(3):772–779PubMedPubMedCentral
97.
go back to reference Kalampokis I, Yoshizaki A, Tedder TF (2013) IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 15(Suppl 1):S1PubMedPubMedCentral Kalampokis I, Yoshizaki A, Tedder TF (2013) IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 15(Suppl 1):S1PubMedPubMedCentral
98.
go back to reference Bjarnadottir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CC et al (2016) B cell-derived transforming growth factor-beta1 expression limits the induction phase of autoimmune neuroinflammation. Sci Rep 6:34594PubMedPubMedCentral Bjarnadottir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CC et al (2016) B cell-derived transforming growth factor-beta1 expression limits the induction phase of autoimmune neuroinflammation. Sci Rep 6:34594PubMedPubMedCentral
99.
go back to reference Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14(8):662–674PubMedPubMedCentral Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14(8):662–674PubMedPubMedCentral
100.
go back to reference Fillatreau S (2016) Regulatory roles of B cells in infectious diseases. Clin Exp Rheumatol 34(4 Suppl 98):1–5PubMed Fillatreau S (2016) Regulatory roles of B cells in infectious diseases. Clin Exp Rheumatol 34(4 Suppl 98):1–5PubMed
101.
go back to reference Wortel CM, Heidt S (2017) Regulatory B cells: phenotype, function and role in transplantation. Transpl Immunol 41:1–9PubMed Wortel CM, Heidt S (2017) Regulatory B cells: phenotype, function and role in transplantation. Transpl Immunol 41:1–9PubMed
102.
go back to reference Gallego-Valle J, Perez-Fernandez VA, Correa-Rocha R, Pion M (2018) Generation of human breg-like phenotype with regulatory function in vitro with bacteria-derived oligodeoxynucleotides. Int J Mol Sci 19(6):1737PubMedCentral Gallego-Valle J, Perez-Fernandez VA, Correa-Rocha R, Pion M (2018) Generation of human breg-like phenotype with regulatory function in vitro with bacteria-derived oligodeoxynucleotides. Int J Mol Sci 19(6):1737PubMedCentral
103.
go back to reference Vadasz Z, Toubi E (2017) FoxP3 expression in macrophages, cancer, and B cells-is it real? Clin Rev Allergy Immunol 52(3):364–372PubMed Vadasz Z, Toubi E (2017) FoxP3 expression in macrophages, cancer, and B cells-is it real? Clin Rev Allergy Immunol 52(3):364–372PubMed
104.
go back to reference Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein, Isenberg DA et al (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5(173):173ra23PubMed Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein, Isenberg DA et al (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5(173):173ra23PubMed
105.
go back to reference Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541PubMedPubMedCentral Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541PubMedPubMedCentral
106.
go back to reference Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42(4):607–612PubMed Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42(4):607–612PubMed
107.
go back to reference Dominguez-Pantoja M, Lopez-Herrera G, Romero-Ramirez H, Santos-Argumedo L, Chavez-Rueda AK, Hernandez-Cueto A et al (2018) CD38 protein deficiency induces autoimmune characteristics and its activation enhances IL-10 production by regulatory B cells. Scand J Immunol 87(6):e12664PubMed Dominguez-Pantoja M, Lopez-Herrera G, Romero-Ramirez H, Santos-Argumedo L, Chavez-Rueda AK, Hernandez-Cueto A et al (2018) CD38 protein deficiency induces autoimmune characteristics and its activation enhances IL-10 production by regulatory B cells. Scand J Immunol 87(6):e12664PubMed
108.
go back to reference Qin J, Zhou J, Fan C, Zhao N, Liu Y, Wang S et al (2017) Increased circulating Th17 but decreased CD4(+)Foxp3(+) Treg and CD19(+)CD1d(hi)CD5(+) Breg subsets in new-onset graves’ disease. Biomed Res Int 2017:8431838PubMedPubMedCentral Qin J, Zhou J, Fan C, Zhao N, Liu Y, Wang S et al (2017) Increased circulating Th17 but decreased CD4(+)Foxp3(+) Treg and CD19(+)CD1d(hi)CD5(+) Breg subsets in new-onset graves’ disease. Biomed Res Int 2017:8431838PubMedPubMedCentral
109.
go back to reference Han J, Sun L, Wang Z, Fan X, Wang L, Song YY et al (2017) Circulating regulatory B cell subsets in patients with neuromyelitis optica spectrum disorders. Neurol Sci 38(7):1205–1212PubMed Han J, Sun L, Wang Z, Fan X, Wang L, Song YY et al (2017) Circulating regulatory B cell subsets in patients with neuromyelitis optica spectrum disorders. Neurol Sci 38(7):1205–1212PubMed
110.
go back to reference Zhang Y, Li J, Zhou N, Zhang Y, Wu M, Xu J et al (2017) The unknown aspect of BAFF: inducing IL-35 production by a CD5(+)CD1d(hi)FcgammaRIIb(hi) regulatory B-Cell subset in Lupus. J Invest Dermatol 137(12):2532–2543PubMed Zhang Y, Li J, Zhou N, Zhang Y, Wu M, Xu J et al (2017) The unknown aspect of BAFF: inducing IL-35 production by a CD5(+)CD1d(hi)FcgammaRIIb(hi) regulatory B-Cell subset in Lupus. J Invest Dermatol 137(12):2532–2543PubMed
111.
go back to reference Natarajan P, Singh A, McNamara JT, Secor ER Jr, Guernsey LA, Thrall RS et al (2012) Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-beta, and co-localize with CD4+Foxp3+T cells. Mucosal Immunol 5(6):691–701PubMedPubMedCentral Natarajan P, Singh A, McNamara JT, Secor ER Jr, Guernsey LA, Thrall RS et al (2012) Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-beta, and co-localize with CD4+Foxp3+T cells. Mucosal Immunol 5(6):691–701PubMedPubMedCentral
112.
go back to reference Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E et al (2012) Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 11(9):670–677PubMed Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E et al (2012) Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 11(9):670–677PubMed
113.
go back to reference Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J et al (2018) LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49(1):120–133PubMedPubMedCentral Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J et al (2018) LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 49(1):120–133PubMedPubMedCentral
114.
go back to reference van de Veen W (2017) The role of regulatory B cells in allergen immunotherapy. Curr Opin Allergy Clin Immunol 17(6):447–452PubMed van de Veen W (2017) The role of regulatory B cells in allergen immunotherapy. Curr Opin Allergy Clin Immunol 17(6):447–452PubMed
115.
go back to reference van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M (2016) Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138(3):654–665PubMed van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M (2016) Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138(3):654–665PubMed
116.
go back to reference Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H et al (2014) Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41(6):1040–1051PubMed Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H et al (2014) Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 41(6):1040–1051PubMed
117.
go back to reference Carter NA, Vasconcellos R, Rosser EC, Tulone C, Munoz-Suano A, Kamanaka M et al (2011) Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 186(10):5569–5579PubMed Carter NA, Vasconcellos R, Rosser EC, Tulone C, Munoz-Suano A, Kamanaka M et al (2011) Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 186(10):5569–5579PubMed
118.
go back to reference Liu Y, Cheng LS, Wu SD, Wang SQ, Li L, She WM et al (2016) IL-10-producing regulatory B-cells suppressed effector T-cells but enhanced regulatory T-cells in chronic HBV infection. Clin Sci (Lond) 130(11):907–919 Liu Y, Cheng LS, Wu SD, Wang SQ, Li L, She WM et al (2016) IL-10-producing regulatory B-cells suppressed effector T-cells but enhanced regulatory T-cells in chronic HBV infection. Clin Sci (Lond) 130(11):907–919
119.
go back to reference Aravena O, Ferrier A, Menon M, Mauri C, Aguillon JC, Soto L et al (2017) TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res Ther 19(1):8PubMedPubMedCentral Aravena O, Ferrier A, Menon M, Mauri C, Aguillon JC, Soto L et al (2017) TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res Ther 19(1):8PubMedPubMedCentral
120.
go back to reference Tarique M, Naz H, Kurra SV, Saini C, Naqvi RA, Rai R et al (2018) Interleukin-10 producing regulatory B cells transformed CD4(+)CD25(-) into tregs and enhanced regulatory T cells function in human leprosy. Front Immunol 9:1636PubMedPubMedCentral Tarique M, Naz H, Kurra SV, Saini C, Naqvi RA, Rai R et al (2018) Interleukin-10 producing regulatory B cells transformed CD4(+)CD25(-) into tregs and enhanced regulatory T cells function in human leprosy. Front Immunol 9:1636PubMedPubMedCentral
121.
go back to reference Moore C, Sauma D, Reyes PA, Morales J, Rosemblatt M, Bono MR et al (2010) Dendritic cells and B cells cooperate in the generation of CD4(+)CD25(+)FOXP3(+) allogeneic T cells. Transpl Proc 42(1):371–375 Moore C, Sauma D, Reyes PA, Morales J, Rosemblatt M, Bono MR et al (2010) Dendritic cells and B cells cooperate in the generation of CD4(+)CD25(+)FOXP3(+) allogeneic T cells. Transpl Proc 42(1):371–375
122.
go back to reference Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167(2):1081–1089PubMed Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167(2):1081–1089PubMed
123.
go back to reference Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC (2003) B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+T cells: role of TGF-beta 1. J Immunol 170(12):5897–5911PubMed Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC (2003) B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+T cells: role of TGF-beta 1. J Immunol 170(12):5897–5911PubMed
124.
go back to reference Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950PubMed Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950PubMed
125.
go back to reference Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Investig 118(10):3420–3430PubMedPubMedCentral Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Investig 118(10):3420–3430PubMedPubMedCentral
126.
go back to reference Tedder TF (2015) B10 cells: a functionally defined regulatory B cell subset. J Immunol 194(4):1395–1401PubMed Tedder TF (2015) B10 cells: a functionally defined regulatory B cell subset. J Immunol 194(4):1395–1401PubMed
127.
go back to reference Egwuagu CE, Yu CR (2015) Interleukin 35-producing B Cells (i35-Breg): a new mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit Rev Immunol 35(1):49–57PubMedPubMedCentral Egwuagu CE, Yu CR (2015) Interleukin 35-producing B Cells (i35-Breg): a new mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit Rev Immunol 35(1):49–57PubMedPubMedCentral
128.
go back to reference Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG (2015) PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun 6:5997PubMed Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG (2015) PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun 6:5997PubMed
129.
go back to reference Ray A, Wang L, Dittel BN (2015) IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 27(10):531–536PubMed Ray A, Wang L, Dittel BN (2015) IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 27(10):531–536PubMed
130.
go back to reference Murphy KM, Nelson CA, Sedy JR (2006) Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 6(9):671–681PubMed Murphy KM, Nelson CA, Sedy JR (2006) Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 6(9):671–681PubMed
131.
go back to reference M’Hidi H, Thibult ML, Chetaille B, Rey F, Bouadallah R, Nicollas R et al (2009) High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am J Clin Pathol 132(4):589–596PubMed M’Hidi H, Thibult ML, Chetaille B, Rey F, Bouadallah R, Nicollas R et al (2009) High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am J Clin Pathol 132(4):589–596PubMed
132.
go back to reference Pennati A, Ng S, Wu Y, Murphy JR, Deng J, Rangaraju S et al (2016) Regulatory B cells induce formation of IL-10-expressing T cells in mice with autoimmune neuroinflammation. J Neurosci 36(50):12598–12610PubMedPubMedCentral Pennati A, Ng S, Wu Y, Murphy JR, Deng J, Rangaraju S et al (2016) Regulatory B cells induce formation of IL-10-expressing T cells in mice with autoimmune neuroinflammation. J Neurosci 36(50):12598–12610PubMedPubMedCentral
133.
go back to reference Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C et al (2016) Regulatory T cell dysfunction Acquiesces to BTLA+regulatory B cells subsequent to oral intervention in experimental autoimmune encephalomyelitis. J Immunol 196(12):5036–5046PubMed Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C et al (2016) Regulatory T cell dysfunction Acquiesces to BTLA+regulatory B cells subsequent to oral intervention in experimental autoimmune encephalomyelitis. J Immunol 196(12):5036–5046PubMed
134.
go back to reference Ray A, Mann MK, Basu S, Dittel BN (2011) A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 230(1–2):1–9PubMed Ray A, Mann MK, Basu S, Dittel BN (2011) A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 230(1–2):1–9PubMed
135.
go back to reference Han J, Sun L, Fan X, Wang Z, Cheng Y, Zhu J et al (2016) Role of regulatory b cells in neuroimmunologic disorders. J Neurosci Res 94(8):693–701PubMedPubMedCentral Han J, Sun L, Fan X, Wang Z, Cheng Y, Zhu J et al (2016) Role of regulatory b cells in neuroimmunologic disorders. J Neurosci Res 94(8):693–701PubMedPubMedCentral
136.
go back to reference Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP et al (2016) Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol 68(2):494–504PubMed Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP et al (2016) Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol 68(2):494–504PubMed
137.
go back to reference Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140PubMed Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140PubMed
138.
go back to reference Li W, Tian X, Lu X, Peng Q, Shu X, Yang H et al (2016) Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci Rep 6:27479PubMedPubMedCentral Li W, Tian X, Lu X, Peng Q, Shu X, Yang H et al (2016) Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci Rep 6:27479PubMedPubMedCentral
139.
go back to reference Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A et al (2017) IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNgamma-producing T cells. Clin Immunol 184:33–41PubMed Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A et al (2017) IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNgamma-producing T cells. Clin Immunol 184:33–41PubMed
140.
go back to reference Daien CI, Gailhac S, Mura T, Audo R, Combe B, Hahne M et al (2014) Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheumatol 66(8):2037–2046PubMed Daien CI, Gailhac S, Mura T, Audo R, Combe B, Hahne M et al (2014) Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheumatol 66(8):2037–2046PubMed
141.
go back to reference Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW et al (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239(1–2):80–86PubMed Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW et al (2011) Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 239(1–2):80–86PubMed
142.
go back to reference Piancone F, Saresella M, Marventano I, La Rosa F, Zoppis M, Agostini S et al (2016) B lymphocytes in multiple sclerosis: bregs and BTLA/CD272 expressing-CD19+lymphocytes modulate disease severity. Sci Rep 6:29699PubMedPubMedCentral Piancone F, Saresella M, Marventano I, La Rosa F, Zoppis M, Agostini S et al (2016) B lymphocytes in multiple sclerosis: bregs and BTLA/CD272 expressing-CD19+lymphocytes modulate disease severity. Sci Rep 6:29699PubMedPubMedCentral
143.
go back to reference Michel L, Chesneau M, Manceau P, Genty A, Garcia A, Salou M et al (2014) Unaltered regulatory B-cell frequency and function in patients with multiple sclerosis. Clin Immunol 155(2):198–208PubMed Michel L, Chesneau M, Manceau P, Genty A, Garcia A, Salou M et al (2014) Unaltered regulatory B-cell frequency and function in patients with multiple sclerosis. Clin Immunol 155(2):198–208PubMed
145.
go back to reference de Andres C, Tejera-Alhambra M, Alonso B, Valor L, Teijeiro R, Ramos-Medina R et al (2014) New regulatory CD19(+)CD25(+) B-cell subset in clinically isolated syndrome and multiple sclerosis relapse. changes after glucocorticoids. J Neuroimmunol 270(1–2):37–44PubMed de Andres C, Tejera-Alhambra M, Alonso B, Valor L, Teijeiro R, Ramos-Medina R et al (2014) New regulatory CD19(+)CD25(+) B-cell subset in clinically isolated syndrome and multiple sclerosis relapse. changes after glucocorticoids. J Neuroimmunol 270(1–2):37–44PubMed
146.
go back to reference Kinnunen T, Chamberlain N, Morbach H, Cantaert T, Lynch M, Preston-Hurlburt P et al (2013) Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J Clin Investig 123(6):2737–2741PubMedPubMedCentral Kinnunen T, Chamberlain N, Morbach H, Cantaert T, Lynch M, Preston-Hurlburt P et al (2013) Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J Clin Investig 123(6):2737–2741PubMedPubMedCentral
147.
go back to reference Hirotani M, Niino M, Fukazawa T, Kikuchi S, Yabe I, Hamada S et al (2010) Decreased IL-10 production mediated by Toll-like receptor 9 in B cells in multiple sclerosis. J Neuroimmunol 221(1–2):95–100PubMed Hirotani M, Niino M, Fukazawa T, Kikuchi S, Yabe I, Hamada S et al (2010) Decreased IL-10 production mediated by Toll-like receptor 9 in B cells in multiple sclerosis. J Neuroimmunol 221(1–2):95–100PubMed
148.
go back to reference Okada Y, Ochi H, Fujii C, Hashi Y, Hamatani M, Ashida S et al (2018) Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple sclerosis through interleukin-10 production. J Autoimmun 88:103–113PubMed Okada Y, Ochi H, Fujii C, Hashi Y, Hamatani M, Ashida S et al (2018) Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple sclerosis through interleukin-10 production. J Autoimmun 88:103–113PubMed
149.
go back to reference Guo S, Chen Q, Liang X, Mu M, He J, Fang Q et al (2018) Reduced peripheral blood regulatory B cell levels are not associated with the expanded disability status scale score in multiple sclerosis. J Int Med Res 48:3970 Guo S, Chen Q, Liang X, Mu M, He J, Fang Q et al (2018) Reduced peripheral blood regulatory B cell levels are not associated with the expanded disability status scale score in multiple sclerosis. J Int Med Res 48:3970
150.
go back to reference Giacomini E, Rizzo F, Etna MP, Cruciani M, Mechelli R, Buscarinu MC et al (2018) Thymosin-alpha1 expands deficient IL-10-producing regulatory B cell subsets in relapsing-remitting multiple sclerosis patients. Mult Scler 24(2):127–139PubMed Giacomini E, Rizzo F, Etna MP, Cruciani M, Mechelli R, Buscarinu MC et al (2018) Thymosin-alpha1 expands deficient IL-10-producing regulatory B cell subsets in relapsing-remitting multiple sclerosis patients. Mult Scler 24(2):127–139PubMed
151.
go back to reference Moreno Torres I, Garcia-Merino A (2017) Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother 17(4):359–371PubMed Moreno Torres I, Garcia-Merino A (2017) Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother 17(4):359–371PubMed
152.
go back to reference Robak T, Robak E (2011) New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs Clin Immunother, Biopharm Gene Ther 25(1):13–25 Robak T, Robak E (2011) New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs Clin Immunother, Biopharm Gene Ther 25(1):13–25
153.
go back to reference Quan C, ZhangBao J, Lu J, Zhao C, Cai T, Wang B et al (2015) The immune balance between memory and regulatory B cells in NMO and the changes of the balance after methylprednisolone or rituximab therapy. J Neuroimmunol 282:45–53PubMed Quan C, ZhangBao J, Lu J, Zhao C, Cai T, Wang B et al (2015) The immune balance between memory and regulatory B cells in NMO and the changes of the balance after methylprednisolone or rituximab therapy. J Neuroimmunol 282:45–53PubMed
154.
go back to reference Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E et al (2014) Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 82(7):573–581PubMed Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E et al (2014) Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 82(7):573–581PubMed
155.
go back to reference von Budingen HC, Palanichamy A, Lehmann-Horn K, Michel BA, Zamvil SS (2015) Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. Eur Neurol 73(3–4):238–246 von Budingen HC, Palanichamy A, Lehmann-Horn K, Michel BA, Zamvil SS (2015) Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. Eur Neurol 73(3–4):238–246
156.
go back to reference Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M et al (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335(1):213–222PubMed Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M et al (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335(1):213–222PubMed
157.
go back to reference Tedder TF (2009) CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 5(10):572–577PubMed Tedder TF (2009) CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 5(10):572–577PubMed
158.
go back to reference Chen D, Blazek M, Ireland S, Ortega S, Kong X, Meeuwissen A et al (2014) Single dose of glycoengineered anti-CD19 antibody (MEDI551) disrupts experimental autoimmune encephalomyelitis by inhibiting pathogenic adaptive immune responses in the bone marrow and spinal cord while preserving peripheral regulatory mechanisms. J Immunol 193(10):4823–4832PubMed Chen D, Blazek M, Ireland S, Ortega S, Kong X, Meeuwissen A et al (2014) Single dose of glycoengineered anti-CD19 antibody (MEDI551) disrupts experimental autoimmune encephalomyelitis by inhibiting pathogenic adaptive immune responses in the bone marrow and spinal cord while preserving peripheral regulatory mechanisms. J Immunol 193(10):4823–4832PubMed
159.
go back to reference Chen D, Ireland SJ, Davis LS, Kong X, Stowe AM, Wang Y et al (2016) Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol 196(4):1541–1549PubMed Chen D, Ireland SJ, Davis LS, Kong X, Stowe AM, Wang Y et al (2016) Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol 196(4):1541–1549PubMed
160.
go back to reference Rotondi M, Molteni M, Leporati P, Capelli V, Marino M, Chiovato L (2017) Autoimmune thyroid diseases in patients treated with alemtuzumab for multiple sclerosis: an example of selective anti-TSH-receptor immune response. Front Endocrinol (Lausanne) 8:254 Rotondi M, Molteni M, Leporati P, Capelli V, Marino M, Chiovato L (2017) Autoimmune thyroid diseases in patients treated with alemtuzumab for multiple sclerosis: an example of selective anti-TSH-receptor immune response. Front Endocrinol (Lausanne) 8:254
161.
go back to reference Simon M, Ipek R, Homola GA, Rovituso DM, Schampel A, Kleinschnitz C et al (2018) Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 15(1):225PubMedPubMedCentral Simon M, Ipek R, Homola GA, Rovituso DM, Schampel A, Kleinschnitz C et al (2018) Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 15(1):225PubMedPubMedCentral
162.
go back to reference Liu J, Wang H, Li Y, Shi P, Gong J, Gu L, et al. (2018) Anti-mouse CD52 treatment ameliorates colitis through suppressing Th1/17 mediated inflammation and promoting Tregs differentiation in IL-10 deficient mice. Biol Pharm Bull Liu J, Wang H, Li Y, Shi P, Gong J, Gu L, et al. (2018) Anti-mouse CD52 treatment ameliorates colitis through suppressing Th1/17 mediated inflammation and promoting Tregs differentiation in IL-10 deficient mice. Biol Pharm Bull
163.
go back to reference Zhang X, Tao Y, Chopra M, Ahn M, Marcus KL, Choudhary N et al (2013) Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol 191(12):5867–5874PubMed Zhang X, Tao Y, Chopra M, Ahn M, Marcus KL, Choudhary N et al (2013) Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol 191(12):5867–5874PubMed
164.
go back to reference De Mercanti S, Rolla S, Cucci A, Bardina V, Cocco E, Vladic A et al (2016) Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months. Neurol Uroimmunol Neuroinflammation 3(1):194 De Mercanti S, Rolla S, Cucci A, Bardina V, Cocco E, Vladic A et al (2016) Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months. Neurol Uroimmunol Neuroinflammation 3(1):194
165.
go back to reference Heidt S, Hester J, Shankar S, Friend PJ, Wood KJ (2012) B cell repopulation after alemtuzumab induction-transient increase in transitional B cells and long-term dominance of naive B cells. Am J Transplant 12(7):1784–1792PubMedPubMedCentral Heidt S, Hester J, Shankar S, Friend PJ, Wood KJ (2012) B cell repopulation after alemtuzumab induction-transient increase in transitional B cells and long-term dominance of naive B cells. Am J Transplant 12(7):1784–1792PubMedPubMedCentral
166.
go back to reference Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K (2017) Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol 74(8):961–969PubMedPubMedCentral Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K (2017) Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol 74(8):961–969PubMedPubMedCentral
167.
go back to reference Dubuisson N, Baker D, Kang AS, Pryce G, Marta M, Visser LH et al (2018) Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology 154(2):253–260PubMedPubMedCentral Dubuisson N, Baker D, Kang AS, Pryce G, Marta M, Visser LH et al (2018) Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology 154(2):253–260PubMedPubMedCentral
168.
go back to reference Mancuso R, Franciotta D, Rovaris M, Caputo D, Sala A, Hernis A et al (2014) Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult Scler. 20(14):1900–1903PubMed Mancuso R, Franciotta D, Rovaris M, Caputo D, Sala A, Hernis A et al (2014) Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult Scler. 20(14):1900–1903PubMed
169.
go back to reference Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G et al (2015) Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler. 21(8):1036–1044PubMed Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G et al (2015) Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler. 21(8):1036–1044PubMed
170.
go back to reference Stenner MP, Waschbisch A, Buck D, Doerck S, Einsele H, Toyka KV et al (2008) Effects of natalizumab treatment on Foxp3+T regulatory cells. PLoS ONE 3(10):e3319PubMedPubMedCentral Stenner MP, Waschbisch A, Buck D, Doerck S, Einsele H, Toyka KV et al (2008) Effects of natalizumab treatment on Foxp3+T regulatory cells. PLoS ONE 3(10):e3319PubMedPubMedCentral
171.
go back to reference Putzki N, Baranwal MK, Tettenborn B, Limmroth V, Kreuzfelder E (2010) Effects of natalizumab on circulating B cells, T regulatory cells and natural killer cells. Eur Neurol 63(5):311–317PubMed Putzki N, Baranwal MK, Tettenborn B, Limmroth V, Kreuzfelder E (2010) Effects of natalizumab on circulating B cells, T regulatory cells and natural killer cells. Eur Neurol 63(5):311–317PubMed
172.
go back to reference Mitsdoerffer M, Kuchroo V, Korn T (2013) Immunology of neuromyelitis optica: a T cell-B cell collaboration. Ann N Y Acad Sci 1283:57–66PubMedPubMedCentral Mitsdoerffer M, Kuchroo V, Korn T (2013) Immunology of neuromyelitis optica: a T cell-B cell collaboration. Ann N Y Acad Sci 1283:57–66PubMedPubMedCentral
173.
go back to reference Li Y, Wang H, Long Y, Lu Z, Hu X (2011) Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol 234(1–2):155–160PubMed Li Y, Wang H, Long Y, Lu Z, Hu X (2011) Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol 234(1–2):155–160PubMed
174.
go back to reference Dos Passos GR, Sato DK, Becker J, Fujihara K (2016) Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators Inflamm 2016:5314541PubMedPubMedCentral Dos Passos GR, Sato DK, Becker J, Fujihara K (2016) Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators Inflamm 2016:5314541PubMedPubMedCentral
175.
go back to reference Huwiler A, Zangemeister-Wittke U (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther 185:34–49PubMed Huwiler A, Zangemeister-Wittke U (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther 185:34–49PubMed
176.
go back to reference Haas J, Schwarz A, Korporal-Kunke M, Jarius S, Wiendl H, Kieseier BC et al (2015) Fingolimod does not impair T-cell release from the thymus and beneficially affects Treg function in patients with multiple sclerosis. Mult Scler 21(12):1521–1532PubMed Haas J, Schwarz A, Korporal-Kunke M, Jarius S, Wiendl H, Kieseier BC et al (2015) Fingolimod does not impair T-cell release from the thymus and beneficially affects Treg function in patients with multiple sclerosis. Mult Scler 21(12):1521–1532PubMed
177.
go back to reference Muls N, Dang HA, Sindic CJ, van Pesch V (2014) Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PLoS ONE 9(11):e113025PubMedPubMedCentral Muls N, Dang HA, Sindic CJ, van Pesch V (2014) Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PLoS ONE 9(11):e113025PubMedPubMedCentral
178.
go back to reference Breuer J, Herich S, Schneider-Hohendorf T, Chasan AI, Wettschureck N, Gross CC, et al (2017) Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium. Mult Scler: 1352458517735189 Breuer J, Herich S, Schneider-Hohendorf T, Chasan AI, Wettschureck N, Gross CC, et al (2017) Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium. Mult Scler: 1352458517735189
179.
go back to reference Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM et al (2014) Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. J Clin Investig 124(5):2188–2192PubMedPubMedCentral Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM et al (2014) Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. J Clin Investig 124(5):2188–2192PubMedPubMedCentral
180.
go back to reference von Glehn F, Dias-Carneiro RPC, Moraes AS, Farias AS, Silva V, Oliveira FTM et al (2018) Dimethyl fumarate downregulates the immune response through the HCA2/GPR109A pathway: implications for the treatment of multiple sclerosis. Mult Scler Relat Disord 23:46–50 von Glehn F, Dias-Carneiro RPC, Moraes AS, Farias AS, Silva V, Oliveira FTM et al (2018) Dimethyl fumarate downregulates the immune response through the HCA2/GPR109A pathway: implications for the treatment of multiple sclerosis. Mult Scler Relat Disord 23:46–50
181.
go back to reference Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. New Engl J Med 367(12):1087–1097PubMed Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. New Engl J Med 367(12):1087–1097PubMed
182.
go back to reference Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. New Engl J Med 367(12):1098–1107PubMed Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. New Engl J Med 367(12):1098–1107PubMed
183.
go back to reference Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y (2018) Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front Neurol 9:5PubMedPubMedCentral Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y (2018) Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front Neurol 9:5PubMedPubMedCentral
184.
go back to reference Lundy SK, Wu Q, Wang Q, Dowling CA, Taitano SH, Mao G et al (2016) Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurol Neuroimmunol Neuroinflammation 3(2):e211 Lundy SK, Wu Q, Wang Q, Dowling CA, Taitano SH, Mao G et al (2016) Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurol Neuroimmunol Neuroinflammation 3(2):e211
185.
go back to reference Li R, Rezk A, Ghadiri M, Luessi F, Zipp F, Li H et al (2017) Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. J Immunol. 198(2):691–698PubMed Li R, Rezk A, Ghadiri M, Luessi F, Zipp F, Li H et al (2017) Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. J Immunol. 198(2):691–698PubMed
186.
go back to reference Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74(6):659–674PubMedPubMedCentral Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74(6):659–674PubMedPubMedCentral
187.
go back to reference Ochoa-Reparaz J, Colpitts SL, Kircher C, Kasper EJ, Telesford KM, Begum-Haque S et al (2016) Induction of gut regulatory CD39+T cells by teriflunomide protects against EAE. Neurol Neuroimmunol Neuroinflammation 3(6):e291 Ochoa-Reparaz J, Colpitts SL, Kircher C, Kasper EJ, Telesford KM, Begum-Haque S et al (2016) Induction of gut regulatory CD39+T cells by teriflunomide protects against EAE. Neurol Neuroimmunol Neuroinflammation 3(6):e291
188.
go back to reference Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Investig 105(7):967–976PubMedPubMedCentral Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Investig 105(7):967–976PubMedPubMedCentral
189.
go back to reference Dhib-Jalbut S (2002) Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 58(8 Suppl 4):S3–S9PubMed Dhib-Jalbut S (2002) Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 58(8 Suppl 4):S3–S9PubMed
190.
go back to reference Racke MK, Lovett-Racke AE, Karandikar NJ (2010) The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74(Suppl 1):S25–S30PubMed Racke MK, Lovett-Racke AE, Karandikar NJ (2010) The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74(Suppl 1):S25–S30PubMed
191.
go back to reference Kala M, Rhodes SN, Piao WH, Shi FD, Campagnolo DI, Vollmer TL (2010) B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 221(1):136–145PubMed Kala M, Rhodes SN, Piao WH, Shi FD, Campagnolo DI, Vollmer TL (2010) B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 221(1):136–145PubMed
192.
go back to reference Van Kaer L (2011) Glatiramer acetate for treatment of MS: regulatory B cells join the cast of players. Exp Neurol 227(1):19–23PubMed Van Kaer L (2011) Glatiramer acetate for treatment of MS: regulatory B cells join the cast of players. Exp Neurol 227(1):19–23PubMed
193.
go back to reference Ireland SJ, Guzman AA, O’Brien DE, Hughes S, Greenberg B, Flores A et al (2014) The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurology 71(11):1421–1428PubMedPubMedCentral Ireland SJ, Guzman AA, O’Brien DE, Hughes S, Greenberg B, Flores A et al (2014) The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurology 71(11):1421–1428PubMedPubMedCentral
194.
go back to reference Jiang H, Milo R, Swoveland P, Johnson KP, Panitch H, Dhib-Jalbut S (1995) Interferon beta-1b reduces interferon gamma-induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61(1):17–25PubMed Jiang H, Milo R, Swoveland P, Johnson KP, Panitch H, Dhib-Jalbut S (1995) Interferon beta-1b reduces interferon gamma-induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61(1):17–25PubMed
195.
go back to reference Dhib-Jalbut S, Marks S (2010) Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74(Suppl 1):S17–S24PubMed Dhib-Jalbut S, Marks S (2010) Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74(Suppl 1):S17–S24PubMed
196.
go back to reference Schubert RD, Hu Y, Kumar G, Szeto S, Abraham P, Winderl J et al (2015) IFN-beta treatment requires B cells for efficacy in neuroautoimmunity. J Immunol 194(5):2110–2116PubMed Schubert RD, Hu Y, Kumar G, Szeto S, Abraham P, Winderl J et al (2015) IFN-beta treatment requires B cells for efficacy in neuroautoimmunity. J Immunol 194(5):2110–2116PubMed
197.
go back to reference Comabella M, Rio J, Espejo C, Ruiz de Villa M, Al-Zayat H, Nos C et al (2009) Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clin Immunol 130(2):145–150PubMed Comabella M, Rio J, Espejo C, Ruiz de Villa M, Al-Zayat H, Nos C et al (2009) Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clin Immunol 130(2):145–150PubMed
198.
199.
go back to reference Chalubinski M, Broncel M (2010) Influence of statins on effector and regulatory immune mechanisms and their potential clinical relevance in treating autoimmune disorders. Med Sci Monit Int Med J Exp Clin Res 16(11):245–251 Chalubinski M, Broncel M (2010) Influence of statins on effector and regulatory immune mechanisms and their potential clinical relevance in treating autoimmune disorders. Med Sci Monit Int Med J Exp Clin Res 16(11):245–251
200.
go back to reference Rodriguez-Perea AL, Montoya CJ, Olek S, Chougnet CA, Velilla PA (2015) Statins increase the frequency of circulating CD4+FOXP3+ regulatory T cells in healthy individuals. J Immunol Res 2015:762506PubMedPubMedCentral Rodriguez-Perea AL, Montoya CJ, Olek S, Chougnet CA, Velilla PA (2015) Statins increase the frequency of circulating CD4+FOXP3+ regulatory T cells in healthy individuals. J Immunol Res 2015:762506PubMedPubMedCentral
201.
go back to reference Kim YC, Kim KK, Shevach EM (2010) Simvastatin induces Foxp3+T regulatory cells by modulation of transforming growth factor-beta signal transduction. Immunology 130(4):484–493PubMedPubMedCentral Kim YC, Kim KK, Shevach EM (2010) Simvastatin induces Foxp3+T regulatory cells by modulation of transforming growth factor-beta signal transduction. Immunology 130(4):484–493PubMedPubMedCentral
202.
go back to reference Peng X, Jin J, Giri S, Montes M, Sujkowski D, Tang Y et al (2006) Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors, potential therapy for relapsing remitting multiple sclerosis. J Neuroimmunol 178(1–2):130–139PubMed Peng X, Jin J, Giri S, Montes M, Sujkowski D, Tang Y et al (2006) Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors, potential therapy for relapsing remitting multiple sclerosis. J Neuroimmunol 178(1–2):130–139PubMed
203.
go back to reference Stuve O, Youssef S, Weber MS, Nessler S, von Budingen HC, Hemmer B et al (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Investig 116(4):1037–1044PubMedPubMedCentral Stuve O, Youssef S, Weber MS, Nessler S, von Budingen HC, Hemmer B et al (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Investig 116(4):1037–1044PubMedPubMedCentral
204.
go back to reference Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM et al (2011) Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 286(2):997–1004PubMed Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM et al (2011) Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 286(2):997–1004PubMed
205.
go back to reference Korf H, Wenes M, Stijlemans B, Takiishi T, Robert S, Miani M et al (2012) 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology 217(12):1292–1300PubMed Korf H, Wenes M, Stijlemans B, Takiishi T, Robert S, Miani M et al (2012) 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology 217(12):1292–1300PubMed
206.
go back to reference Xie Z, Chen J, Zheng C, Wu J, Cheng Y, Zhu S et al (2017) 1,25-dihydroxyvitamin D3 -induced dendritic cells suppress experimental autoimmune encephalomyelitis by increasing proportions of the regulatory lymphocytes and reducing T helper type 1 and type 17 cells. Immunology 152(3):414–424PubMedPubMedCentral Xie Z, Chen J, Zheng C, Wu J, Cheng Y, Zhu S et al (2017) 1,25-dihydroxyvitamin D3 -induced dendritic cells suppress experimental autoimmune encephalomyelitis by increasing proportions of the regulatory lymphocytes and reducing T helper type 1 and type 17 cells. Immunology 152(3):414–424PubMedPubMedCentral
207.
go back to reference Salzer J, Hallmans G, Nystrom M, Stenlund H, Wadell G, Sundstrom P (2012) Vitamin D as a protective factor in multiple sclerosis. Neurology 79(21):2140–2145PubMed Salzer J, Hallmans G, Nystrom M, Stenlund H, Wadell G, Sundstrom P (2012) Vitamin D as a protective factor in multiple sclerosis. Neurology 79(21):2140–2145PubMed
208.
go back to reference Soilu-Hanninen M, Laaksonen M, Laitinen I, Eralinna JP, Lilius EM, Mononen I (2008) A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. J Neurol Neurosurg Psychiatry 79(2):152–157PubMed Soilu-Hanninen M, Laaksonen M, Laitinen I, Eralinna JP, Lilius EM, Mononen I (2008) A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. J Neurol Neurosurg Psychiatry 79(2):152–157PubMed
209.
go back to reference Kimball SM, Ursell MR, O’Connor P, Vieth R (2007) Safety of vitamin D3 in adults with multiple sclerosis. Am J Clin Nutr 86(3):645–651PubMed Kimball SM, Ursell MR, O’Connor P, Vieth R (2007) Safety of vitamin D3 in adults with multiple sclerosis. Am J Clin Nutr 86(3):645–651PubMed
210.
go back to reference Cantorna MT, Snyder L, Lin YD, Yang L (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7(4):3011–3021PubMedPubMedCentral Cantorna MT, Snyder L, Lin YD, Yang L (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7(4):3011–3021PubMedPubMedCentral
Metadata
Title
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes?
Authors
Georgios K. Vasileiadis
Efthymios Dardiotis
Athanasios Mavropoulos
Zisis Tsouris
Vana Tsimourtou
Dimitrios P. Bogdanos
Lazaros I. Sakkas
Georgios M. Hadjigeorgiou
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Autoimmunity Highlights / Issue 1/2018
Print ISSN: 2038-0305
Electronic ISSN: 2038-3274
DOI
https://doi.org/10.1007/s13317-018-0109-x

Other articles of this Issue 1/2018

Autoimmunity Highlights 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.