Skip to main content
Top
Published in: Comparative Hepatology 1/2004

Open Access 01-01-2004 | Proceedings

Regulation of matrix metallo-proteinase expression by extracellular matrix components in cultured hepatic stellate cells

Authors: Da-Ren Wang, Mitsuru Sato, Takeya Sato, Naosuke Kojima, Nobuyo Higashi, Haruki Senoo

Published in: Comparative Hepatology | Special Issue 1/2004

Login to get access

Abstract

Hepatic stellate cells (HSC) changed their morphology and function including production of matrix metalloproteinases (MMPs) in response to extracellular matrix (ECM) component used as a substratum in culture. We examined in this study the regulatory role of ECM component on expression of MMPs and tissue inhibitor of metalloproteinase (TIMP) in rat HSCs cultured on polystyrene, type I collagen-coated surface, type I collagen gel, or Matrigel, respectively. When cultured on type I collagen gel, HSCs showed the asteroid cell shape and MMP-1 activity, as detected by in situ zymography. Expression of MMP-1 protein and mRNA were examined by using immunofluorescence staining and RT-PCR analysis in HSCs cultured on type I collagen gel. Active form of MMP-2 was detected by gelatin zymography in the conditioned medium of HSCs cultured on type I collagen gel, whereas it was not detected when HSCs were cultured on polystyrene, type I collagen-coated surface, or Matrigel. Increased MMP-2 mRNA was detected by RT-PCR in HSCs cultured on type I collagen gel. Increased MT1-MMP proteins were shown to localize on the cell membrane by using immunofluorescence staining in HSCs cultured on type I collagen gel. Elevated expression of membrane-type matrix metallproteinase-1 (MT1-MMP) mRNA and tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA was detected by RT-PCR in HSCs cultured on type I collagen-coated surface or type I collagen gel. These results indicate that expression of MMPs and TIMP-2 is regulated by ECM components in cultured HSCs, suggesting an important role of HSCs in the remodeling of liver tissue.
Literature
1.
go back to reference Jones PL, Schmidhauser C, Bissell MJ: Regulation of gene expression and cell function by extracellular matrix. Crit Rev Eukaryot Gene Expr. 1993, 3: 137-154.PubMed Jones PL, Schmidhauser C, Bissell MJ: Regulation of gene expression and cell function by extracellular matrix. Crit Rev Eukaryot Gene Expr. 1993, 3: 137-154.PubMed
2.
go back to reference Loreal O, Levavasseur F, Fromaget C, Gros D, Guillouzo A, Clement B: Cooperation of Ito cells and hepatocytes in deposition of an extracellular matrix in vitro. Am J Pathol. 1993, 143: 538-544.PubMedCentralPubMed Loreal O, Levavasseur F, Fromaget C, Gros D, Guillouzo A, Clement B: Cooperation of Ito cells and hepatocytes in deposition of an extracellular matrix in vitro. Am J Pathol. 1993, 143: 538-544.PubMedCentralPubMed
3.
go back to reference Geerts A, De Bleser P, Hautekeetem ML, Niki T, Wisse E: Fat-storing (Ito) cell biology in the liver. In: Biology and Pathology. 1994, New York, Raven Press, 819-838. Geerts A, De Bleser P, Hautekeetem ML, Niki T, Wisse E: Fat-storing (Ito) cell biology in the liver. In: Biology and Pathology. 1994, New York, Raven Press, 819-838.
4.
go back to reference Hidalgo M, Eckhardt SG: Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001, 93: 178-193. 10.1093/jnci/93.3.178.CrossRefPubMed Hidalgo M, Eckhardt SG: Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001, 93: 178-193. 10.1093/jnci/93.3.178.CrossRefPubMed
5.
go back to reference Arthur MJ, Stanley A, Iredale JP, Rafferty JA, Hembry RM, Friedman SL: Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of gene expression, protein synthesis and proteinase activity. Biochem J. 1992, 287: 701-707.PubMedCentralCrossRefPubMed Arthur MJ, Stanley A, Iredale JP, Rafferty JA, Hembry RM, Friedman SL: Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of gene expression, protein synthesis and proteinase activity. Biochem J. 1992, 287: 701-707.PubMedCentralCrossRefPubMed
6.
go back to reference Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Van Westrum SS, Crabbe T, Clements J, d'Ortho MP, Murphy G: The TIMP2 membrane type 1 metalloproteinase receptor regulates the concentration and efficient activation of progelatinase. A kinetic study. J Biol Chem. 1998, 273: 871-880. 10.1074/jbc.273.2.871.CrossRefPubMed Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Van Westrum SS, Crabbe T, Clements J, d'Ortho MP, Murphy G: The TIMP2 membrane type 1 metalloproteinase receptor regulates the concentration and efficient activation of progelatinase. A kinetic study. J Biol Chem. 1998, 273: 871-880. 10.1074/jbc.273.2.871.CrossRefPubMed
Metadata
Title
Regulation of matrix metallo-proteinase expression by extracellular matrix components in cultured hepatic stellate cells
Authors
Da-Ren Wang
Mitsuru Sato
Takeya Sato
Naosuke Kojima
Nobuyo Higashi
Haruki Senoo
Publication date
01-01-2004
Publisher
BioMed Central
Published in
Comparative Hepatology / Issue Special Issue 1/2004
Electronic ISSN: 1476-5926
DOI
https://doi.org/10.1186/1476-5926-2-S1-S20

Other articles of this Special Issue 1/2004

Comparative Hepatology 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine