Skip to main content
Top
Published in: Medical Oncology 5/2024

01-05-2024 | Review Article

Regulation of cancer progression by CK2: an emerging therapeutic target

Authors: Shakeel Hussain, Yilei Guo, Yu Huo, Juanjuan Shi, Yongzhong Hou

Published in: Medical Oncology | Issue 5/2024

Login to get access

Abstract

Casein kinase II (CK2) is an enzyme with pleiotropic kinase activity that catalyzes the phosphorylation of lots of substrates, including STAT3, p53, JAK2, PTEN, RELA, and AKT, leading to the regulation of diabetes, cardiovascular diseases, angiogenesis, and tumor progression. CK2 is observed to have high expression in multiple types of cancer, which is associated with poor prognosis. CK2 holds significant importance in the intricate network of pathways involved in promoting cell proliferation, invasion, migration, apoptosis, and tumor growth by multiple pathways such as JAK2/STAT3, PI3K/AKT, ATF4/p21, and HSP90/Cdc37. In addition to the regulation of cancer progression, increasing evidence suggests that CK2 could regulate tumor immune responses by affecting immune cell activity in the tumor microenvironment resulting in the promotion of tumor immune escape. Therefore, inhibition of CK2 is initially proposed as a pivotal candidate for cancer treatment. In this review, we discussed the role of CK2 in cancer progression and tumor therapy.
Literature
1.
go back to reference Pinna L. A historical view of protein kinase CK2. Cell Mol Biol Res. 1994;40:383–90.PubMed Pinna L. A historical view of protein kinase CK2. Cell Mol Biol Res. 1994;40:383–90.PubMed
3.
go back to reference Montenarh M, Götz C. Protein kinase CK2 and ion channels. Biomed Rep. 2020;13:1.CrossRef Montenarh M, Götz C. Protein kinase CK2 and ion channels. Biomed Rep. 2020;13:1.CrossRef
4.
go back to reference Faust RA, Niehans G, Gapany M, Hoistad D, Knapp D, Cherwitz D, et al. Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int J Biochem Cell Biol. 1999;31:941–9.PubMedCrossRef Faust RA, Niehans G, Gapany M, Hoistad D, Knapp D, Cherwitz D, et al. Subcellular immunolocalization of protein kinase CK2 in normal and carcinoma cells. Int J Biochem Cell Biol. 1999;31:941–9.PubMedCrossRef
5.
go back to reference Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Molr Ther Nucleic Acids. 2021;23:27–41.CrossRef Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Molr Ther Nucleic Acids. 2021;23:27–41.CrossRef
6.
go back to reference Kwon J, Zhang J, Mok B, Han C. CK2-Mediated phosphorylation upregulates the stability of USP13 and promotes ovarian cancer cell proliferation. Cancers. 2022;15:200.PubMedPubMedCentralCrossRef Kwon J, Zhang J, Mok B, Han C. CK2-Mediated phosphorylation upregulates the stability of USP13 and promotes ovarian cancer cell proliferation. Cancers. 2022;15:200.PubMedPubMedCentralCrossRef
7.
go back to reference Siddiqui YH, Kershaw RM, Humphreys EH, Assis Junior E, Chaudhri S, Jayaraman P-S, et al. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis. 2017;6:e293.PubMedPubMedCentralCrossRef Siddiqui YH, Kershaw RM, Humphreys EH, Assis Junior E, Chaudhri S, Jayaraman P-S, et al. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis. 2017;6:e293.PubMedPubMedCentralCrossRef
8.
go back to reference Im D-K, Cheong H, Lee JS, Oh M-K, Yang KM. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci Rep. 2019;9:1–11.CrossRef Im D-K, Cheong H, Lee JS, Oh M-K, Yang KM. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci Rep. 2019;9:1–11.CrossRef
9.
go back to reference Niechi I, Silva E, Cabello P, Huerta H, Carrasco V, Villar P, et al. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget. 2015;6:42749.PubMedPubMedCentralCrossRef Niechi I, Silva E, Cabello P, Huerta H, Carrasco V, Villar P, et al. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget. 2015;6:42749.PubMedPubMedCentralCrossRef
10.
go back to reference Wu D, Sui C, Meng F, Tian X, Fu L, Li Y, et al. Stable knockdown of protein kinase CK2-alpha (CK2α) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem. 2014;116:1501–8.PubMedCrossRef Wu D, Sui C, Meng F, Tian X, Fu L, Li Y, et al. Stable knockdown of protein kinase CK2-alpha (CK2α) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem. 2014;116:1501–8.PubMedCrossRef
11.
go back to reference Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem. 2014;115:2103–15.PubMedPubMedCentralCrossRef Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem. 2014;115:2103–15.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang L, Ruan X, Gu M, Mueck A. E2+ norethisterone promotes the PI3K–AKT pathway via PGRMC1 to induce breast cancer cell proliferation. Climacteric. 2022;25:467–75.PubMedCrossRef Zhang L, Ruan X, Gu M, Mueck A. E2+ norethisterone promotes the PI3K–AKT pathway via PGRMC1 to induce breast cancer cell proliferation. Climacteric. 2022;25:467–75.PubMedCrossRef
13.
go back to reference Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9.
14.
go back to reference Zhao N, Wang C, Guo P, Hou J, Yang H, Lan T, et al. CCDC106 promotes the proliferation and invasion of ovarian cancer cells by suppressing p21 transcription through a p53-independent pathway. Bioengineered. 2022;13:10957–73.PubMedCentralCrossRef Zhao N, Wang C, Guo P, Hou J, Yang H, Lan T, et al. CCDC106 promotes the proliferation and invasion of ovarian cancer cells by suppressing p21 transcription through a p53-independent pathway. Bioengineered. 2022;13:10957–73.PubMedCentralCrossRef
15.
go back to reference Manni S, Carrino M, Piazza F. Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. J Hematol Oncol. 2017;10:1–10.CrossRef Manni S, Carrino M, Piazza F. Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. J Hematol Oncol. 2017;10:1–10.CrossRef
16.
go back to reference Sun J, Zhang X, Sun Y. C1orf109 promotes malignant phenotype of liver cancer via wnt signaling pathway in a CK2-dependent manner. J Mol Histol. 2023;54:135–45.PubMedCrossRef Sun J, Zhang X, Sun Y. C1orf109 promotes malignant phenotype of liver cancer via wnt signaling pathway in a CK2-dependent manner. J Mol Histol. 2023;54:135–45.PubMedCrossRef
17.
go back to reference Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol. 2013;6:1–15.CrossRef Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol. 2013;6:1–15.CrossRef
19.
go back to reference Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med. 2011;9:1–11.CrossRef Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med. 2011;9:1–11.CrossRef
20.
go back to reference Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127.PubMedPubMedCentralCrossRef Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127.PubMedPubMedCentralCrossRef
21.
go back to reference Kim S, Ham S, Yang K, Kim K. Protein kinase CK2 activation is required for transforming growth factor β-induced epithelial–mesenchymal transition. Mol Oncol. 2018;12:1811–26.PubMedPubMedCentralCrossRef Kim S, Ham S, Yang K, Kim K. Protein kinase CK2 activation is required for transforming growth factor β-induced epithelial–mesenchymal transition. Mol Oncol. 2018;12:1811–26.PubMedPubMedCentralCrossRef
22.
go back to reference Turowec JP, Duncan JS, Gloor GB, Litchfield DW. Regulation of caspase pathways by protein kinase CK2: identification of proteins with overlapping CK2 and caspase consensus motifs. Mol Cell Biochem. 2011;356:159–67.PubMedCrossRef Turowec JP, Duncan JS, Gloor GB, Litchfield DW. Regulation of caspase pathways by protein kinase CK2: identification of proteins with overlapping CK2 and caspase consensus motifs. Mol Cell Biochem. 2011;356:159–67.PubMedCrossRef
23.
go back to reference Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.PubMedCrossRef Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.PubMedCrossRef
24.
go back to reference Trembley J, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009;66:1858–67.PubMedPubMedCentralCrossRef Trembley J, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009;66:1858–67.PubMedPubMedCentralCrossRef
25.
go back to reference Nipun V, Amin K. Recent advances in protein kinase CK2, a potential therapeutic target in cancer. Russ J Bioorg Chem. 2022;48:919–31.CrossRef Nipun V, Amin K. Recent advances in protein kinase CK2, a potential therapeutic target in cancer. Russ J Bioorg Chem. 2022;48:919–31.CrossRef
26.
27.
go back to reference Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul. 2017;64:1–8.PubMedCrossRef Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul. 2017;64:1–8.PubMedCrossRef
28.
go back to reference Hwang S-Y, Chae J-I, Kwak A-W, Lee M-H, Shim J-H. Alternative options for skin cancer therapy via regulation of AKT and related signaling pathways. Int J Mol Sci. 2020;21:6869.PubMedPubMedCentralCrossRef Hwang S-Y, Chae J-I, Kwak A-W, Lee M-H, Shim J-H. Alternative options for skin cancer therapy via regulation of AKT and related signaling pathways. Int J Mol Sci. 2020;21:6869.PubMedPubMedCentralCrossRef
29.
go back to reference Duan Y, Haybaeck J, Yang Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progress. Cancers. 2020;12:2972.PubMedPubMedCentralCrossRef Duan Y, Haybaeck J, Yang Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progress. Cancers. 2020;12:2972.PubMedPubMedCentralCrossRef
30.
go back to reference Chen J-F, Wu P, Xia R, Yang J, Huo X-Y, Gu D-Y, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 2018;17:1–16.CrossRef Chen J-F, Wu P, Xia R, Yang J, Huo X-Y, Gu D-Y, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 2018;17:1–16.CrossRef
31.
go back to reference Trembley JH, Kren BT, Abedin MJ, Shaughnessy DP, Li Y, Dehm SM, et al. CK2 pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFκB p65 expression. Pharmaceuticals. 2019;12:89.PubMedPubMedCentralCrossRef Trembley JH, Kren BT, Abedin MJ, Shaughnessy DP, Li Y, Dehm SM, et al. CK2 pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFκB p65 expression. Pharmaceuticals. 2019;12:89.PubMedPubMedCentralCrossRef
32.
go back to reference Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Protein kinase CK2 promotes aberrant activation of nuclear factor-κB, transformed phenotype, and survival of breast cancer cells. Can Res. 2002;62:6770–8. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE. Protein kinase CK2 promotes aberrant activation of nuclear factor-κB, transformed phenotype, and survival of breast cancer cells. Can Res. 2002;62:6770–8.
33.
go back to reference Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct Target Ther. 2021;6:183.PubMedPubMedCentralCrossRef Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct Target Ther. 2021;6:183.PubMedPubMedCentralCrossRef
34.
go back to reference Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstädt D, et al. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget. 2014;5:2131.PubMedPubMedCentralCrossRef Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstädt D, et al. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget. 2014;5:2131.PubMedPubMedCentralCrossRef
35.
37.
go back to reference Zhang S, Yang Y-L, Wang Y, You B, Dai Y, Chan G, et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J Exp Clin Cancer Res. 2014;33:1–12. Zhang S, Yang Y-L, Wang Y, You B, Dai Y, Chan G, et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J Exp Clin Cancer Res. 2014;33:1–12.
38.
go back to reference Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.PubMedCrossRef Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.PubMedCrossRef
39.
go back to reference Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18:1–16.CrossRef Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18:1–16.CrossRef
40.
go back to reference Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 2004;90:1265–73.PubMedPubMedCentralCrossRef Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 2004;90:1265–73.PubMedPubMedCentralCrossRef
41.
go back to reference Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276:993–8.PubMedCrossRef Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276:993–8.PubMedCrossRef
42.
go back to reference Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000;20:5010–8.PubMedPubMedCentralCrossRef Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000;20:5010–8.PubMedPubMedCentralCrossRef
43.
go back to reference Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12:668–77.PubMedCrossRef Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ. 2005;12:668–77.PubMedCrossRef
44.
go back to reference Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle. 2008;7:2466–71.PubMedCrossRef Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle. 2008;7:2466–71.PubMedCrossRef
45.
go back to reference Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.PubMedCrossRef Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.PubMedCrossRef
46.
go back to reference Duncan JS, Turowec JP, Vilk G, Li SS, Gloor GB, Litchfield DW. Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochimica et Biophysica Acta. 2010;1804:505–10.PubMedCrossRef Duncan JS, Turowec JP, Vilk G, Li SS, Gloor GB, Litchfield DW. Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochimica et Biophysica Acta. 2010;1804:505–10.PubMedCrossRef
47.
go back to reference Degli Esposti M, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C. Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase 8 or caspase 3. J Biol Chem. 2003;278:15749–57.PubMedCrossRef Degli Esposti M, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C. Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase 8 or caspase 3. J Biol Chem. 2003;278:15749–57.PubMedCrossRef
48.
49.
go back to reference Ruzzene M, Penzo D, Pinna LA. Protein kinase CK2 inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002;364:41–7.PubMedPubMedCentralCrossRef Ruzzene M, Penzo D, Pinna LA. Protein kinase CK2 inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002;364:41–7.PubMedPubMedCentralCrossRef
50.
go back to reference Yamane K, Kinsella TJ. Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res. 2005;11:2355–63.PubMedCrossRef Yamane K, Kinsella TJ. Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res. 2005;11:2355–63.PubMedCrossRef
51.
go back to reference Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338–51.PubMedCrossRef Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338–51.PubMedCrossRef
52.
go back to reference Hashimoto A, Gao C, Mastio J, Kossenkov A, Abrams SI, Purandare AV, et al. Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in MiceCK2 INHIBITOR and MDSC. Can Res. 2018;78:5644–55.CrossRef Hashimoto A, Gao C, Mastio J, Kossenkov A, Abrams SI, Purandare AV, et al. Inhibition of casein kinase 2 disrupts differentiation of myeloid cells in cancer and enhances the efficacy of immunotherapy in MiceCK2 INHIBITOR and MDSC. Can Res. 2018;78:5644–55.CrossRef
53.
go back to reference Cheng P, Kumar V, Liu H, Youn J-I, Fishman M, Sherman S, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancernotch and myeloid cells in cancer. Can Res. 2014;74:141–52.CrossRef Cheng P, Kumar V, Liu H, Youn J-I, Fishman M, Sherman S, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancernotch and myeloid cells in cancer. Can Res. 2014;74:141–52.CrossRef
54.
go back to reference Reverendo M, Argüello RJ, Polte C, Valečka J, Camosseto V, Auphan-Anezin N, et al. Polymerase III transcription is necessary for T cell priming by dendritic cells. Proc Natl Acad Sci. 2019;116:22721–9.PubMedPubMedCentralCrossRef Reverendo M, Argüello RJ, Polte C, Valečka J, Camosseto V, Auphan-Anezin N, et al. Polymerase III transcription is necessary for T cell priming by dendritic cells. Proc Natl Acad Sci. 2019;116:22721–9.PubMedPubMedCentralCrossRef
55.
go back to reference Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020;12:e7431.CrossRef Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020;12:e7431.CrossRef
56.
go back to reference Zhao X, Wei Y, Chu Y-Y, Li Y, Hsu J-M, Jiang Z, et al. Phosphorylation and stabilization of PD-L1 by CK2 suppresses dendritic cell function. Can Res. 2022;82:2185–95.CrossRef Zhao X, Wei Y, Chu Y-Y, Li Y, Hsu J-M, Jiang Z, et al. Phosphorylation and stabilization of PD-L1 by CK2 suppresses dendritic cell function. Can Res. 2022;82:2185–95.CrossRef
57.
go back to reference Ljunggren H-G, Malmberg K-J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.PubMedCrossRef Ljunggren H-G, Malmberg K-J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.PubMedCrossRef
58.
go back to reference Kim H, Kim K, Lee K, Kim S, Kim J. Inhibition of casein kinase 2 enhances the death ligand-and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol. 2008;152:336–44.PubMedPubMedCentralCrossRef Kim H, Kim K, Lee K, Kim S, Kim J. Inhibition of casein kinase 2 enhances the death ligand-and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol. 2008;152:336–44.PubMedPubMedCentralCrossRef
59.
go back to reference Nelson N, Szekeres K, Iclozan C, Rivera IO, McGill A, Johnson G, et al. Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS ONE. 2017;12: e0170197.PubMedPubMedCentralCrossRef Nelson N, Szekeres K, Iclozan C, Rivera IO, McGill A, Johnson G, et al. Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS ONE. 2017;12: e0170197.PubMedPubMedCentralCrossRef
60.
go back to reference Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284:13869–80.PubMedPubMedCentralCrossRef Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284:13869–80.PubMedPubMedCentralCrossRef
61.
go back to reference Yang W, Wei H, Benavides GA, Turbitt WJ, Buckley JA, Ouyang X, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol. 2022;209:896–906.PubMedCrossRef Yang W, Wei H, Benavides GA, Turbitt WJ, Buckley JA, Ouyang X, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol. 2022;209:896–906.PubMedCrossRef
62.
go back to reference Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein kinase CK2 regulates B cell development and differentiation. J Immunol. 2021;207:799–808.PubMedCrossRef Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein kinase CK2 regulates B cell development and differentiation. J Immunol. 2021;207:799–808.PubMedCrossRef
63.
go back to reference Piazza F, Manni S, Ruzzene M, Pinna L, Gurrieri C, Semenzato G. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia. 2012;26:1174–9.PubMedCrossRef Piazza F, Manni S, Ruzzene M, Pinna L, Gurrieri C, Semenzato G. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia. 2012;26:1174–9.PubMedCrossRef
64.
go back to reference Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood. 2006;108:1698–707.PubMedCrossRef Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood. 2006;108:1698–707.PubMedCrossRef
65.
go back to reference Zhao M, Ma J, Zhu H-Y, Zhang X-H, Du Z-Y, Xu Y-J, et al. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer. 2011;10:1–14.CrossRef Zhao M, Ma J, Zhu H-Y, Zhang X-H, Du Z-Y, Xu Y-J, et al. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer. 2011;10:1–14.CrossRef
66.
go back to reference Chou S-T, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, et al. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release. 2016;244:14–23.PubMedPubMedCentralCrossRef Chou S-T, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, et al. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release. 2016;244:14–23.PubMedPubMedCentralCrossRef
68.
go back to reference Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K. Targeting CK2 for cancer therapy. Anticancer Drugs. 2005;16:1037–43.PubMedCrossRef Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K. Targeting CK2 for cancer therapy. Anticancer Drugs. 2005;16:1037–43.PubMedCrossRef
69.
go back to reference Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of α-catenin from β-catenin and transactivation of β-catenin. Mol Cell. 2009;36:547–59.PubMedPubMedCentralCrossRef Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of α-catenin from β-catenin and transactivation of β-catenin. Mol Cell. 2009;36:547–59.PubMedPubMedCentralCrossRef
70.
go back to reference Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna L, et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene. 2007;26:6915–26.PubMedCrossRef Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna L, et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene. 2007;26:6915–26.PubMedCrossRef
71.
go back to reference Kramerov A, Saghizadeh M, Caballero S, Shaw L, Li Calzi S, Bretner M, et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem. 2008;316:177–86.PubMedPubMedCentralCrossRef Kramerov A, Saghizadeh M, Caballero S, Shaw L, Li Calzi S, Bretner M, et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem. 2008;316:177–86.PubMedPubMedCentralCrossRef
72.
go back to reference Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med. 2008;86:887–97.PubMedCrossRef Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med. 2008;86:887–97.PubMedCrossRef
73.
go back to reference Ahmed K, Tawfic S, Yu S, Wang H, Faust R, Davis A. Protein kinase CK2 signal in neoplasia. Histol Histopathol. 2001;16:573–82.PubMed Ahmed K, Tawfic S, Yu S, Wang H, Faust R, Davis A. Protein kinase CK2 signal in neoplasia. Histol Histopathol. 2001;16:573–82.PubMed
75.
76.
go back to reference Son YH, Song JS, Kim SH, Kim J. Pharmacokinetic characterization of CK2 inhibitor CX-4945. Arch Pharmacal Res. 2013;36:840–5.CrossRef Son YH, Song JS, Kim SH, Kim J. Pharmacokinetic characterization of CK2 inhibitor CX-4945. Arch Pharmacal Res. 2013;36:840–5.CrossRef
77.
go back to reference Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: a peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. In: Seminars in oncology. Amsterdam: Elsevier; 2018. p. 58–67. Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: a peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. In: Seminars in oncology. Amsterdam: Elsevier; 2018. p. 58–67.
78.
go back to reference Jung M, Park KH, Kim HM, Kim TS, Zhang X, Park S-M, et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer. Gastric Cancer. 2019;22:1153–63.PubMedCrossRef Jung M, Park KH, Kim HM, Kim TS, Zhang X, Park S-M, et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer. Gastric Cancer. 2019;22:1153–63.PubMedCrossRef
79.
go back to reference Wińska P, Widło Ł, Skierka K, Krzyśko A, Koronkiewicz M, Cieśla JM, et al. Simultaneous inhibition of protein kinase CK2 and dihydrofolate reductase results in synergistic effect on acute lymphoblastic leukemia cells. Anticancer Res. 2019;39:3531–42.PubMedCrossRef Wińska P, Widło Ł, Skierka K, Krzyśko A, Koronkiewicz M, Cieśla JM, et al. Simultaneous inhibition of protein kinase CK2 and dihydrofolate reductase results in synergistic effect on acute lymphoblastic leukemia cells. Anticancer Res. 2019;39:3531–42.PubMedCrossRef
80.
go back to reference D’Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy–potential clinical relevance. Cell Oncol. 2020;43:1003–16.CrossRef D’Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy–potential clinical relevance. Cell Oncol. 2020;43:1003–16.CrossRef
81.
go back to reference McCarty MF, Assanga SI, Lujan LL. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses. 2020;141: 109723.PubMedCrossRef McCarty MF, Assanga SI, Lujan LL. Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses. 2020;141: 109723.PubMedCrossRef
82.
go back to reference Yim H, Lee YH, Lee CH, Lee SK. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999;65:9–13.PubMedCrossRef Yim H, Lee YH, Lee CH, Lee SK. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999;65:9–13.PubMedCrossRef
83.
go back to reference Costa PSd, Ramos PS, Ferreira C, Silva JL, El-Bacha T, Fialho E. Pro-oxidant effect of resveratrol on human breast cancer MCF-7 cells is associated with CK2 inhibition. Nutr Cancer. 2022;74:2142–51.PubMedCrossRef Costa PSd, Ramos PS, Ferreira C, Silva JL, El-Bacha T, Fialho E. Pro-oxidant effect of resveratrol on human breast cancer MCF-7 cells is associated with CK2 inhibition. Nutr Cancer. 2022;74:2142–51.PubMedCrossRef
84.
go back to reference Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress–induced apoptosis and from the cytotoxic effect of hsp90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 2012;18:1888–900.PubMedCrossRef Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress–induced apoptosis and from the cytotoxic effect of hsp90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 2012;18:1888–900.PubMedCrossRef
85.
go back to reference Zhao Z, Wang L, Volk AG, Birch NW, Stoltz KL, Bartom ET, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61–74.PubMedPubMedCentralCrossRef Zhao Z, Wang L, Volk AG, Birch NW, Stoltz KL, Bartom ET, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33:61–74.PubMedPubMedCentralCrossRef
86.
go back to reference Menyhart D, Gyenis L, Jurcic K, Roffey SE, Puri A, Jovanovic P, et al. Comparison of CX-4945 and SGC-CK2-1 as inhibitors of CSNK2 using quantitative phosphoproteomics: triple SILAC in combination with inhibitor-resistant CSNK2. Curr Res Chem Biol. 2023;3: 100041.CrossRef Menyhart D, Gyenis L, Jurcic K, Roffey SE, Puri A, Jovanovic P, et al. Comparison of CX-4945 and SGC-CK2-1 as inhibitors of CSNK2 using quantitative phosphoproteomics: triple SILAC in combination with inhibitor-resistant CSNK2. Curr Res Chem Biol. 2023;3: 100041.CrossRef
87.
go back to reference Li K, Zhou F, Zhou Y, Zhang S, Li Q, Li Z, et al. Quinalizarin, a specific CK2 inhibitor, can reduce icotinib resistance in human lung adenocarcinoma cell lines. Int J Mol Med. 2019;44:437–46.PubMedPubMedCentral Li K, Zhou F, Zhou Y, Zhang S, Li Q, Li Z, et al. Quinalizarin, a specific CK2 inhibitor, can reduce icotinib resistance in human lung adenocarcinoma cell lines. Int J Mol Med. 2019;44:437–46.PubMedPubMedCentral
88.
go back to reference Lindenblatt D, Applegate V, Nickelsen A, Klußmann M, Neundorf I, Götz C, et al. Molecular plasticity of crystalline CK2α′ leads to KN2, a bivalent inhibitor of protein kinase CK2 with extraordinary selectivity. J Med Chem. 2021;65:1302–12.PubMedCrossRef Lindenblatt D, Applegate V, Nickelsen A, Klußmann M, Neundorf I, Götz C, et al. Molecular plasticity of crystalline CK2α′ leads to KN2, a bivalent inhibitor of protein kinase CK2 with extraordinary selectivity. J Med Chem. 2021;65:1302–12.PubMedCrossRef
89.
go back to reference Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. Cancer J Clin. 2024;74:12–49.CrossRef Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. Cancer J Clin. 2024;74:12–49.CrossRef
Metadata
Title
Regulation of cancer progression by CK2: an emerging therapeutic target
Authors
Shakeel Hussain
Yilei Guo
Yu Huo
Juanjuan Shi
Yongzhong Hou
Publication date
01-05-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 5/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02316-6

Other articles of this Issue 5/2024

Medical Oncology 5/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.