Skip to main content
Top
Published in: BMC Geriatrics 1/2019

Open Access 01-12-2019 | Research article

Reference values and associated factors of hand grip strength in elderly Saudi population: a cross-sectional study

Authors: Bader Alqahtani, Aqeel Alenazi, Mohammed Alshehri, Mohammed Alqahtani, Ragab Elnaggar

Published in: BMC Geriatrics | Issue 1/2019

Login to get access

Abstract

Background

Hand grip strength (HGS) is an important function of upper extremities for older adults. Several studies have shown the importance of measuring HGS in different settings. Current established normative values of HGS are applicable for Western countries. However, there is limited information of normative values of HGS after considering demographics in Saudi population. Therefore, this study aimed to establish normative values of HGS stratified by age and gender, and to determine the association of anthropometric measurements with the HGS in Saudi population.

Methods

A cross-sectional study included a total of 1048 participants (mean age 73 ± 5 years). Grip strength was calculated by the average peak force of three trials for the dominant hand using a dynamometer. Sociodemographic data on age, gender, marital status, educational levels were collected. Anthropometric measurements including height, body mass index, arm circumference, and upper arm length were obtained. The sample was categorized into three age groups: 65–69 years, 70–74 years, and 75–80 years. Linear regression analysis was used to assess the association between the sociodemographic and anthropometric data and HGS.

Results

The mean values of HGS (kg) for men for each age group were 36.9 ± 8.3 for the younger group, 35.7 ± 7.4 for the 70–74 years group and 30.5 ± 7.1 for the older group. The mean values of HGS for women for each group were 23.2 ± 4.7 for the younger group, 21.1 ± 4.6 for the 70–74 years group and 18.8 ± 4.9 for the older group. The HGS was negatively associated with the age for men (B = -.40, 95% confidence interval (CI) [−.52, −.29], p < 0.001) and women (B = -.30, 95% CI [− 0.38, − 0.22], p < 0.001), and positively associated with the arm length in men (B = .87, 95% CI [.60, 1.15], p < 0.001). The HGS was positively associated with the educational level in men (B = .66, 95% CI [.09,1.21], p = .02), but negatively associated in women (B = -.42, 95% CI [− 0.75, − 0.08], p = .01).

Conclusion

This study is the first that established normative values of HGS for older adults in Saudi Arabia. Future research may benefit from the current normative value of HGS in Saudi population for geriatric rehabilitation programs.
Literature
2.
go back to reference Swanson AB, Göran-Hagert C, de Groot Swanson G. Evaluation of impairment in the upper extremity. J Hand Surg Am. 1987;12(5):896–926.CrossRef Swanson AB, Göran-Hagert C, de Groot Swanson G. Evaluation of impairment in the upper extremity. J Hand Surg Am. 1987;12(5):896–926.CrossRef
3.
go back to reference Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE. Normative data on hand grip strength in a Greek adult population. Int Orthop. 2009;33(3):713–7.CrossRef Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE. Normative data on hand grip strength in a Greek adult population. Int Orthop. 2009;33(3):713–7.CrossRef
4.
go back to reference Silventoinen K, Magnusson PKE, Tynelius P, Batty GD, Rasmussen F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: a population-based cohort study of one million Swedish men. Int J Epidemiol. 2009;38(1):110–8.CrossRef Silventoinen K, Magnusson PKE, Tynelius P, Batty GD, Rasmussen F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: a population-based cohort study of one million Swedish men. Int J Epidemiol. 2009;38(1):110–8.CrossRef
5.
go back to reference Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, et al. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. 2000;55(3):M168–73.CrossRef Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, et al. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. 2000;55(3):M168–73.CrossRef
6.
go back to reference Leong DP, Teo KK, Rangarajan S, Kutty VR, Lanas F, Hui C, et al. Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: a prospective urban rural epidemiologic (PURE) study. J Cachexia Sarcopenia Muscle. 2016;7(5):535–46.CrossRef Leong DP, Teo KK, Rangarajan S, Kutty VR, Lanas F, Hui C, et al. Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: a prospective urban rural epidemiologic (PURE) study. J Cachexia Sarcopenia Muscle. 2016;7(5):535–46.CrossRef
7.
go back to reference Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med. 2007;120(4):337–42.CrossRef Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med. 2007;120(4):337–42.CrossRef
8.
go back to reference Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol Ser A Biol Sci Med Sci. 2002;57(10):B359–65.CrossRef Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol Ser A Biol Sci Med Sci. 2002;57(10):B359–65.CrossRef
9.
go back to reference Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol Ser A Biol Sci Med Sci. 2006;61(1):72–7.CrossRef Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol Ser A Biol Sci Med Sci. 2006;61(1):72–7.CrossRef
14.
go back to reference Desrosiers J, Bravo G, Hébert R, Dutil E. Normative data for grip strength of elderly men and women. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1995;49(7):637–44.CrossRef Desrosiers J, Bravo G, Hébert R, Dutil E. Normative data for grip strength of elderly men and women. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1995;49(7):637–44.CrossRef
15.
go back to reference Schlüssel MM, dos Anjos LA, de Vasconcellos MTL, Kac G. Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin Nutr. 2008;27(4):601–7.CrossRef Schlüssel MM, dos Anjos LA, de Vasconcellos MTL, Kac G. Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin Nutr. 2008;27(4):601–7.CrossRef
16.
go back to reference Zeng P, Han Y, Pang J, Wu S, Gong H, Zhu J, et al. Sarcopenia-related features and factors associated with lower muscle strength and physical performance in older Chinese: a cross sectional study physical functioning, ph 1 ysical health and activity. BMC Geriatr. 2016;16:45.CrossRef Zeng P, Han Y, Pang J, Wu S, Gong H, Zhu J, et al. Sarcopenia-related features and factors associated with lower muscle strength and physical performance in older Chinese: a cross sectional study physical functioning, ph 1 ysical health and activity. BMC Geriatr. 2016;16:45.CrossRef
17.
go back to reference Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4:127.CrossRef Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4:127.CrossRef
18.
go back to reference Günther CM, Bürger A, Rickert M, Crispin A, Schulz CU. Grip strength in healthy Caucasian adults: reference values. J Hand Surg Am. 2008;33(4):558–65.CrossRef Günther CM, Bürger A, Rickert M, Crispin A, Schulz CU. Grip strength in healthy Caucasian adults: reference values. J Hand Surg Am. 2008;33(4):558–65.CrossRef
19.
go back to reference Veronese N, Stubbs B, Fontana L, Trevisan C, Bolzetta F, De Rui M, et al. A comparison of objective physical performance tests and future mortality in the elderly people. J Gerontol Ser A Biol Sci Med Sci. 2017;72(3):362–8. Veronese N, Stubbs B, Fontana L, Trevisan C, Bolzetta F, De Rui M, et al. A comparison of objective physical performance tests and future mortality in the elderly people. J Gerontol Ser A Biol Sci Med Sci. 2017;72(3):362–8.
20.
go back to reference Jeune B, Skytthe A, Cournil A, Greco V, Gampe J, Berardelli M, et al. Handgrip strength among nonagenarians and centenarians in three European regions. J Gerontol Ser A Biol Sci Med Sci. 2006;61(7):707–12.CrossRef Jeune B, Skytthe A, Cournil A, Greco V, Gampe J, Berardelli M, et al. Handgrip strength among nonagenarians and centenarians in three European regions. J Gerontol Ser A Biol Sci Med Sci. 2006;61(7):707–12.CrossRef
21.
go back to reference Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92:5–11.CrossRef Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92:5–11.CrossRef
22.
go back to reference Li K, Hewson DJ, Duchêne J, Hogrel JY. Predicting maximal grip strength using hand circumference. Man Ther. 2010;15(6):579–85.CrossRef Li K, Hewson DJ, Duchêne J, Hogrel JY. Predicting maximal grip strength using hand circumference. Man Ther. 2010;15(6):579–85.CrossRef
23.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. Vol. 2nd; 1988. p. 567. Cohen J. Statistical power analysis for the behavioral sciences. Vol. 2nd; 1988. p. 567.
24.
go back to reference Bahat G, Tufan A, Kilic C, Aydın T, Akpinar TS, Kose M, et al. Cut-off points for height, weight and body mass index adjusted bioimpedance analysis measurements of muscle mass with use of different threshold definitions. Aging Male. 2018;29:1–6. Bahat G, Tufan A, Kilic C, Aydın T, Akpinar TS, Kose M, et al. Cut-off points for height, weight and body mass index adjusted bioimpedance analysis measurements of muscle mass with use of different threshold definitions. Aging Male. 2018;29:1–6.
25.
go back to reference Brach JS, Perera S, Gilmore S, VanSwearingen JM, Brodine D, Nadkarni NK, et al. Effectiveness of a timing and coordination group exercise program to improve mobility in community-dwelling older adults: a randomized clinical trial. JAMA Intern Med. 2017;177(10):1437–44.CrossRef Brach JS, Perera S, Gilmore S, VanSwearingen JM, Brodine D, Nadkarni NK, et al. Effectiveness of a timing and coordination group exercise program to improve mobility in community-dwelling older adults: a randomized clinical trial. JAMA Intern Med. 2017;177(10):1437–44.CrossRef
26.
go back to reference Ong HL, Abdin E, Chua BY, Zhang Y, Seow E, Vaingankar JA, et al. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017;17(1):176.CrossRef Ong HL, Abdin E, Chua BY, Zhang Y, Seow E, Vaingankar JA, et al. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017;17(1):176.CrossRef
27.
go back to reference Mendes J, Amaral TF, Borges N, Santos A, Padrão P, Moreira P, et al. Handgrip strength values of Portuguese older adults: a population based study. BMC Geriatr. 2017;17(1):191.CrossRef Mendes J, Amaral TF, Borges N, Santos A, Padrão P, Moreira P, et al. Handgrip strength values of Portuguese older adults: a population based study. BMC Geriatr. 2017;17(1):191.CrossRef
30.
go back to reference Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V. Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol A Biol Sci Med Sci. 1999;54(5):M249–53.CrossRef Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V. Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol A Biol Sci Med Sci. 1999;54(5):M249–53.CrossRef
31.
go back to reference Malhotra R, Ang S, Allen JC, Tan NC, Østbye T, Saito Y, et al. Normative Values of Hand Grip Strength for Elderly Singaporeans Aged 60 to 89 Years: A Cross-Sectional Study. J Am Med Dir Assoc. 2016;17(9):864.e1–7.CrossRef Malhotra R, Ang S, Allen JC, Tan NC, Østbye T, Saito Y, et al. Normative Values of Hand Grip Strength for Elderly Singaporeans Aged 60 to 89 Years: A Cross-Sectional Study. J Am Med Dir Assoc. 2016;17(9):864.e1–7.CrossRef
32.
go back to reference de Lima TR, Silva DAS, de Castro JAC, Christofaro DGD. Handgrip strength and associated sociodemographic and lifestyle factors: a systematic review of the adult population. J Bodyw Mov Ther. 2017;21(2):401–13.CrossRef de Lima TR, Silva DAS, de Castro JAC, Christofaro DGD. Handgrip strength and associated sociodemographic and lifestyle factors: a systematic review of the adult population. J Bodyw Mov Ther. 2017;21(2):401–13.CrossRef
33.
go back to reference Lagerström C, Nordgren B. On the reliability and usefulness of methods for grip strength measurement. Scand J Rehabil Med. 1998;30(2):113–9.CrossRef Lagerström C, Nordgren B. On the reliability and usefulness of methods for grip strength measurement. Scand J Rehabil Med. 1998;30(2):113–9.CrossRef
Metadata
Title
Reference values and associated factors of hand grip strength in elderly Saudi population: a cross-sectional study
Authors
Bader Alqahtani
Aqeel Alenazi
Mohammed Alshehri
Mohammed Alqahtani
Ragab Elnaggar
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2019
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-019-1288-7

Other articles of this Issue 1/2019

BMC Geriatrics 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.