Skip to main content
Top
Published in: Pediatric Radiology 1/2018

01-01-2018 | Minisymposium: Minimizing sedation in pediatric MRI

Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

Authors: Rizwan Ahmad, Houchun Harry Hu, Ramkumar Krishnamurthy, Rajesh Krishnamurthy

Published in: Pediatric Radiology | Issue 1/2018

Login to get access

Abstract

Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk–benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI.
Literature
1.
go back to reference Stern KWD, Gauvreau K, Geva T et al (2014) The impact of procedural sedation on diagnostic errors in pediatric echocardiography. J Am Soc Echocardiogr 27:949–955 Stern KWD, Gauvreau K, Geva T et al (2014) The impact of procedural sedation on diagnostic errors in pediatric echocardiography. J Am Soc Echocardiogr 27:949–955
2.
go back to reference Grunwell JR, McCracken C, Fortenberry J et al (2014) Risk factors leading to failed procedural sedation in children outside the operating room. Pediatr Emerg Care 30:381–387CrossRefPubMed Grunwell JR, McCracken C, Fortenberry J et al (2014) Risk factors leading to failed procedural sedation in children outside the operating room. Pediatr Emerg Care 30:381–387CrossRefPubMed
3.
go back to reference Schmidt MH, Marshall J, Downie J et al (2011) Pediatric magnetic resonance research and the minimal-risk standard. IRB 33:1–6PubMed Schmidt MH, Marshall J, Downie J et al (2011) Pediatric magnetic resonance research and the minimal-risk standard. IRB 33:1–6PubMed
4.
go back to reference Stratmann G, Lee J, Sall JW et al (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39:2275–2287 Stratmann G, Lee J, Sall JW et al (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39:2275–2287
5.
go back to reference DiMaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151CrossRefPubMedPubMedCentral DiMaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151CrossRefPubMedPubMedCentral
6.
go back to reference Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250CrossRefPubMed Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250CrossRefPubMed
7.
go back to reference Daldrup-Link HE, Sammet C, Hernanz-Schulman M et al (2016) White paper on P4 concepts for pediatric imaging. J Am Coll Radiol 13:590–597.e2 Daldrup-Link HE, Sammet C, Hernanz-Schulman M et al (2016) White paper on P4 concepts for pediatric imaging. J Am Coll Radiol 13:590–597.e2
8.
go back to reference Zhang T, Grafendorfer T, Cheng JY et al (2016) A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med 76:1015–1021CrossRefPubMed Zhang T, Grafendorfer T, Cheng JY et al (2016) A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med 76:1015–1021CrossRefPubMed
9.
go back to reference Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMed
10.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
11.
go back to reference Skare S, Newbould RD, Clayton DB et al (2007) Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise. Magn Reson Med 57:881–890CrossRefPubMedPubMedCentral Skare S, Newbould RD, Clayton DB et al (2007) Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise. Magn Reson Med 57:881–890CrossRefPubMedPubMedCentral
12.
go back to reference McGibney G, Smith MR, Nichols ST et al (1993) Quantitative evaluation of several partial fourier reconstruction algorithms used in MRI. Magn Reson Med 30:51–59CrossRefPubMed McGibney G, Smith MR, Nichols ST et al (1993) Quantitative evaluation of several partial fourier reconstruction algorithms used in MRI. Magn Reson Med 30:51–59CrossRefPubMed
13.
go back to reference O’Brien KR, Myerson SG, Cowan BR et al (2009) Phase contrast ultrashort TE: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn Reson Med 62:626–636CrossRefPubMed O’Brien KR, Myerson SG, Cowan BR et al (2009) Phase contrast ultrashort TE: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn Reson Med 62:626–636CrossRefPubMed
14.
go back to reference Bydder M, Robson MD (2005) Partial fourier partially parallel imaging. Magn Reson Med 53:1393–1401CrossRefPubMed Bydder M, Robson MD (2005) Partial fourier partially parallel imaging. Magn Reson Med 53:1393–1401CrossRefPubMed
15.
16.
go back to reference Tsao J, Boesiger P, Pruessmann KP (2003) K-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042CrossRefPubMed Tsao J, Boesiger P, Pruessmann KP (2003) K-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042CrossRefPubMed
17.
go back to reference Pedersen H, Kozerke S, Ringgaard S et al (2009) K-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716CrossRefPubMed Pedersen H, Kozerke S, Ringgaard S et al (2009) K-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716CrossRefPubMed
18.
go back to reference Breuer FA, Kellman P, Griswold MA et al (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985CrossRefPubMed Breuer FA, Kellman P, Griswold MA et al (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985CrossRefPubMed
19.
go back to reference Huang F, Akao J, Vijayakumar S et al (2005) K-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184CrossRefPubMed Huang F, Akao J, Vijayakumar S et al (2005) K-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184CrossRefPubMed
20.
go back to reference Jung B, Ullmann P, Honal M et al (2008) Parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA): optimized spatiotemporal dynamic imaging. J Magn Reson Imaging 28:1226–1232 Jung B, Ullmann P, Honal M et al (2008) Parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA): optimized spatiotemporal dynamic imaging. J Magn Reson Imaging 28:1226–1232
21.
go back to reference van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRefPubMed van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRefPubMed
22.
go back to reference Hennig J, Scheffler K, Laubenberger J et al (1997) Time-resolved projection angiography after bolus injection of contrast agent. Magn Reson Med 37:341–345CrossRefPubMed Hennig J, Scheffler K, Laubenberger J et al (1997) Time-resolved projection angiography after bolus injection of contrast agent. Magn Reson Med 37:341–345CrossRefPubMed
23.
go back to reference Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351CrossRefPubMed Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351CrossRefPubMed
24.
go back to reference Lustig M, Donoho DL, Santos JM et al (2008) Compressed sensing MRI. IEEE Signal Process Mag 25:72–82CrossRef Lustig M, Donoho DL, Santos JM et al (2008) Compressed sensing MRI. IEEE Signal Process Mag 25:72–82CrossRef
25.
go back to reference Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373CrossRefPubMed Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373CrossRefPubMed
26.
go back to reference Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–W259CrossRefPubMedPubMedCentral Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–W259CrossRefPubMedPubMedCentral
28.
go back to reference Larson AC, Kellman P, Arai A et al (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53:159–168CrossRefPubMedPubMedCentral Larson AC, Kellman P, Arai A et al (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53:159–168CrossRefPubMedPubMedCentral
29.
30.
go back to reference Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717CrossRefPubMed Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717CrossRefPubMed
31.
go back to reference Barth M, Breuer F, Koopmans PJ et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81CrossRefPubMed Barth M, Breuer F, Koopmans PJ et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81CrossRefPubMed
32.
go back to reference Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691CrossRefPubMed Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691CrossRefPubMed
33.
go back to reference Wang H, Adluru G, Chen L et al (2016) Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion. Magn Reson Imaging 34:1329–1336CrossRefPubMed Wang H, Adluru G, Chen L et al (2016) Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion. Magn Reson Imaging 34:1329–1336CrossRefPubMed
34.
go back to reference Krishnamurthy R, Pednekar A, Atweh LA et al (2015) Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children. J Cardiovasc Magn Reson 17:1CrossRefPubMedPubMedCentral Krishnamurthy R, Pednekar A, Atweh LA et al (2015) Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children. J Cardiovasc Magn Reson 17:1CrossRefPubMedPubMedCentral
35.
go back to reference Han F, Rapacchi S, Khan S et al (2015) Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children. Magn Reson Med 74:1042–1049CrossRefPubMed Han F, Rapacchi S, Khan S et al (2015) Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children. Magn Reson Med 74:1042–1049CrossRefPubMed
37.
go back to reference Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643 Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643
38.
go back to reference Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed
39.
go back to reference Piccini D, Feng L, Bonanno G et al (2017) Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 77:1473–1484CrossRefPubMed Piccini D, Feng L, Bonanno G et al (2017) Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 77:1473–1484CrossRefPubMed
40.
go back to reference Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51CrossRefPubMedPubMedCentral Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51CrossRefPubMedPubMedCentral
41.
go back to reference Kuhl CK, Schrading S, Strobel K et al (2014) Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection — a novel approach to breast cancer screening with MRI. J Clin Oncol 32:2304–2310CrossRefPubMed Kuhl CK, Schrading S, Strobel K et al (2014) Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection — a novel approach to breast cancer screening with MRI. J Clin Oncol 32:2304–2310CrossRefPubMed
42.
go back to reference Besa C, Lewis S, Pandharipande PV et al (2017) Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol 42:179–190 Besa C, Lewis S, Pandharipande PV et al (2017) Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol 42:179–190
43.
go back to reference Markl M, Schnell S, Barker AJ (2014) 4D flow imaging: current status to future clinical applications. Curr Cardiol Rep 16:481CrossRefPubMed Markl M, Schnell S, Barker AJ (2014) 4D flow imaging: current status to future clinical applications. Curr Cardiol Rep 16:481CrossRefPubMed
44.
go back to reference Piccini D, Feng L, Bonanno G et al (2016) Free-breathing 3D whole-heart coronary MRA using respiratory motion-resolved sparse reconstruction. J Cardiovasc Magn Reson 18:O105CrossRefPubMedCentral Piccini D, Feng L, Bonanno G et al (2016) Free-breathing 3D whole-heart coronary MRA using respiratory motion-resolved sparse reconstruction. J Cardiovasc Magn Reson 18:O105CrossRefPubMedCentral
45.
go back to reference Bratis K, Grigoratos C, Henningsson M et al (2016) Clinical evaluation of 3D high resolution late enhancement using image-based navigation. J Cardiovasc Magn Reson 18:P310CrossRefPubMedCentral Bratis K, Grigoratos C, Henningsson M et al (2016) Clinical evaluation of 3D high resolution late enhancement using image-based navigation. J Cardiovasc Magn Reson 18:P310CrossRefPubMedCentral
46.
go back to reference Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary. Circulation 118:2395–2451CrossRefPubMed Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary. Circulation 118:2395–2451CrossRefPubMed
47.
go back to reference Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed
48.
go back to reference Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed
Metadata
Title
Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols
Authors
Rizwan Ahmad
Houchun Harry Hu
Ramkumar Krishnamurthy
Rajesh Krishnamurthy
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 1/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3987-6

Other articles of this Issue 1/2018

Pediatric Radiology 1/2018 Go to the issue

Minisymposium: Minimizing sedation in pediatric MRI

Pediatric anesthesia and neurotoxicity: what the radiologist needs to know